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ABSTRACT
In recent years, we have witnessed a rapid increase of text con-
tent stored in digital archives such as newspaper archives or web
archives. Many old documents have been converted to digital form
and made accessible online. Due to the passage of time, it is however
di�cult to e�ectively perform search within such collections. Users,
especially younger ones, may have problems in �nding appropriate
keywords to perform e�ective search due to the terminology gap
arising between their knowledge and the unfamiliar domain of
archival collections. In this paper, we provide a general framework
to bridge di�erent domains across-time and, by this, to facilitate
search and comparison as if carried in user’s familiar domain (i.e.,
the present). In particular, we propose to �nd analogical terms
across temporal text collections by applying a series of transfor-
mation procedures. We develop a cluster-biased transformation
technique which makes use of hierarchical cluster structures built
on the temporally distributed document collections. Our methods
do not need any specially prepared training data and can be applied
to diverse collections and time periods. We test the performance
of the proposed approaches on the collections separated by both
short (e.g., 20 years) and long time gaps (70 years), and we report
improvements in range of 18%-27% over short and 56%-92% over
long periods when compared to state-of-the-art baselines.

CCS CONCEPTS
•Information systems→�ery suggestion; �ery reformu-
lation; Similaritymeasures; Novelty in information retrieval;
�estion answering;

KEYWORDS
temporal analog, dual hierarchical structure, cluster-biased, hetero-
geneous document collections

1 INTRODUCTION
A rapid increase of text content stored in digital archives is the result
of widespread digitization and content curation initiatives aiming at
facilitating access to past documents. Millions of newspapers, books,
past snapshots of web pages or other document genres are made
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accessible and searchable. Unfortunately, most of the current users
are not professionals and are not very familiar with the contexts
of the past times. When performing search in unfamiliar domains
such as document collections spanning several decades users have
problems with �nding or recalling correct keywords to search with.

To bridge the gap between a user’s familiar domain and the
unfamiliar search domain, we propose a transformation mecha-
nism based on dual hierarchical structures which automatically
transforms terms from one domain to another one for establish-
ing across-domain similarity measure. By this we aim to allow
performing search by analogical objects or to help users be�er
understand entities in the past by casting them into the current
context. Once the transformation is established, di�erent retrieval
requests/applications can be accessed/applied to. For instance, users
could issue a query like “iPod in 1980s” and the system would sug-
gest similar concept in 1980s such as “Walkman”. Alternatively, one
could enter entity from the past such as “Samaranch” (International
Olympics Commi�ee president in 1980s-90s) to learn about his
present counterpart “Thomas Bach”. Note that the transformation
mechanism does not only help to solve the cold-start problem in
search across temporal domains by formulating queries in the form
of analogy, but, if successful, it should also help with term un-
derstanding and text comparison (e.g., word, sentence, document
comparison).

Transformation of text in heterogeneous domains is however
not trivial due to strong e�ect of time elapse, culture di�erences,
etc., suggesting that the direct context comparison will not work.
To solve this issue, we apply distributed word embedding technique
[28, 29] in order to �rst set the vocabularies of each domain into
their own semantic spaces separately.

To design the mapping function as mentioned above, we �rst uti-
lize automatically derived training anchor term pairs to construct
the transformation matrix for aligning two vector spaces. However
the shortcoming of that approach is that it assumes that entire
vocabulary in one space follow the same rule (mapping function)
in transformation (i.e., a single transformation matrix is used). We
thus introduce an advanced approach called dual hierarchy based
term transformation to relax the above assumption by training mul-
tiple transformation matrices biased on speci�c semantic clusters.
�is advanced method aims at providing more precise mapping
across di�erent vocabulary sets by considering the speci�city of
transforming di�erent sets of semantics.

To utilize the trained mapping functions (or transformation ma-
trices) for across-domain search, we introduce several retrieval
models and similarity metrics based on the above-mentioned trans-
formation mechanisms.

To sum up, our contributions are as follows:
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(1) We propose an e�ective and unsupervised framework to
transform text across heterogeneous domains such as dif-
ferent time periods, which provides fundamental technique
to conduct similarity comparison across vector spaces. To
guarantee precise mapping, we introduce an advanced
transformation mechanism based on dual hierarchical struc-
tures to train speci�c mapping function for each semantic
cluster.

(2) To test the performance of the proposed transformation
techniques, we introduce several retrieval models for across-
domain search scenarios. Our approaches are unsupervised
and do not require any external ontologies, knowledge
bases or lexicons (e.g., no need for a Wordnet like lexicon
of any POS tagger for the past).

(3) We evaluate the proposed approaches on the unstructured
text in temporal collections separated by varying length
time gaps.

�e reminder of this paper is structured as follows. We start
with the introduction of related work in the next section and we
formally describe the research problem in Sec. 3. We then discuss
the general term transformation technique in Sec. 4. Sec. 5 explains
our approach of term transformation based on dual hierarchical
structures. Next, we describe the experimental setup and give the
evaluation results in Sec. 6 and 7, respectively. We conclude the
paper and outline the future work in the last section.

2 RELATEDWORK
2.1 Temporal Information Retrieval
Temporal Information Retrieval has become the subject of multiple
studies in recent years [10]. Prior research focused on tasks such
as time-aware document ranking [5, 11, 19, 24], temporal organiza-
tion of search results [2, 3], query understanding [11, 26], future
information retrieval [4, 16], analyzing semantic shi�s over time
[15, 22, 23, 27], explaining past documents [35] and so on. Among
the above topics, temporal change of the semantic meaning - an
emerging topic of study within historical linguistics [1, 9, 14, 25] is
relevant to this work. Several researchers employed computational
methods for analyzing changes in word senses over time. Mihalcea
et al. [27] classi�ed words to one of three past epochs based on
word contexts. Kim et al. [22] and Kulkarni et al. [23] computed the
degree of meaning change by applying neural networks for word
representation. Our objective is however di�erent as we directly
search for corresponding terms across time rather than analyze the
scope of semantic change of a given target word.

Topic detection and tracking [6, 38, 41] focused on developing
methods for tracking changes in the popularity of topics over time
given a text corpus. For example, Blei et al. [6] and Wang et al.
[38] extend latent Dirichlet allocation (LDA) [7] to model topic
evolution over time. Blei et al. assume that the topics in one year
are dependent on the topics in the previous year, while Wang and
McCallum assume that each topic has its own distribution over
time. �e objective of those works is to explore how the topic
evolves over time by tracking topics over continuous time spans. On
the other hand, our research is an information retrieval problem
to �nd semantically equivalent terms in two distant time periods
(temporal analog detection).

Some works have already approached the problem of matching
terms across time [5, 17, 18, 34, 39, 40]. Berberich et al. [5] proposed
to �nd similar terms by direct context comparison and by applying
Hiden Markov Model based model. Kalurachchi et al. [17] tried
to discover semantically similar concepts by association rule min-
ing under the assumption that concepts associated with the same
verbs tend to be similar. Tahmasebi et al. [34] extended the work
of Berberich et al. [5] by detecting bursty time periods when the
same concept or the same entity changed its name and applied a
rule-based approach for �nding synonymous terms in such periods.
Another work relied on analyzing revisions in temporal snapshots
of Wikipedia to detect name variants of the same objects [18]. All
these approaches assume that the same surface form words retain
identical semantics over time (essentially assuming a homogeneous
document collection). �is assumption is too restrictive over longer
time spans due to language change as discussed above and, in
general, due to the World’s change. Furthermore, [5, 17, 34] rely
on another simplifying assumption that the contexts of compared
terms (terms from di�erent time periods) have relatively high over-
lap allowing any meaningful comparison. Finally, the proposal of
Kanhabua et al. [18] is only applicable to short timespans - the last
ten years during which Wikipedia existed.

Zhang et al. [39, 40] used neural network based term representa-
tions for capturing word semantics in di�erent time periods. �ey
�rst constructed a mapping function to align two vector spaces
using Global Transformation (GT) technique to perform mapping
across the entire vocabularies in an o�-line manner. �en, upon
receiving query, an on-line process called Local Transformation
(LT) was conducted to perform a more precise mapping by selecting
reference terms for improving the temporal analog retrieval. Note
that unlike the local transformation approach, our methods work is
in an o�-line manner without the need for expensive computation
during query time. Naturally, same as in the case of Local Transfor-
mation [39, 40], an additional on-line computation process can be
incorporated to further re-rank the initial candidate results and by
these to obtain be�er results. Compared to Global Transformation
our proposal utilizes automatically constructed dual hierarchical
structures to harness semantic structures existing in the distinct
vector spaces. As it will be demonstrated in the experiments, our
proposal signi�cantly outperforms Global Transformation by a
wide margin on all the tested time periods and used datasets.

2.2 Domain Adaptation
Several researchers [8, 20, 21, 30] investigated the domain adap-
tation task. For example, Blitzer et al. [8] proposed a Structural
Correspondence Learning (SCL) to �nd correspondences among
features from di�erent domains. �is was done by modeling cor-
relations of the features with pivot features. �eir method was
proved to perform well in a discriminative frameworks such as
in the task of PoS-tagging. Similarly, Kato et al. [20, 21] utilized
Relative Aggregation Points (RAP) such as average price, maxi-
mum/minimum cost, restaurant categories etc. in di�erent domains
as pivot features to detect restaurants in di�erent cities that corre-
spond to a given query restaurant. Both those proposals work in a
discriminative learning manner where a conditional probability of
instances in a domain is estimated and classi�ed into a certain class.
Hence, they can only be applied for the data where instances are

Session 3F: Temporal Data CIKM’17, November 6-10, 2017, Singapore

718



already classi�ed or their distributions over categories are known
in corresponding domains. For unstructured text collections (e.g.,
news archives, online reviews, books), where the entities are not
represented by any �xed a�ributes, it is necessary to user other
information and di�erent techniques. Unlike these works, we pro-
pose a general framework that leverages the semantics of terms and
their relative positions in semantic spaces constructed over distinct
time periods for performing cluster-guided transformation. Our
method can be thus applied to cases when a query is an arbitrary
term such as object or person name, and data is retrieved from any
unstructured datasets.

2.3 Analogical Relation Detection
Lastly, analogical relation detection [12, 36, 37] is to some extent
related to our work. Structure Mapping Engine (SME) [12] was
the original implementation of a well-known Structure Mapping
�eory (SMT) [13] that de�nes the way in which humans perform
analogical inference. Latent Relational Mapping Engine (LRME)
[37] extended these ideas by extracting lexical pa�erns in which
words co-occur to measure relational similarity of analogous word
pairs. �ese approaches are however always based on a single
dataset. Hence, contextual information speci�c to a particular time
period is lost, as it will be later proved in our experiments; and so,
the semantic transformation is necessary.

3 PROBLEM STATEMENT
In this section, we formally de�ne the problem of term similarity
measurement across heterogeneous domains such as di�erent time
periods.

We set two spaces: a base domain (i.e., domain familiar to a user
such as the present decade or a time period spanning few recent
years) Sb = {wb

1,w
b
2, ...,w

b
m} (wb

i is the vector representation of a
term wb

i , wb
i ∈ Vocabulary of Sb) from which the query is selected,

and a target domain (user’s search domain, i.e., some period in the
past) St = {wt

1,w
t
2, ...,w

t
n} (wt

i is the vector representation of term
wt
i , wt

i ∈ Vocabulary of St) where the answer is to be retrieved
from.

Term Transformation is a mapping functionM(∗) used to align the
vocabularies of Sb and St where each of the vector space contains
the vector representation of words.

Temporal Analog, also called here a temporal counterpart, is de-
�ned as a term wt (e.g., Walkman) which is semantically similar to
the queried term wb (e.g., iPod in the scenario of searching across
time periods: 1980s vs. 2000s). Note that the literal forms of tempo-
ral counterparts can be di�erent from each other as long as their
meanings remain similar. Moreover their context terms are not
required to be literally same.

4 GLOBAL TRANSFORMATION
We focus in this section on constructing the general mapping func-
tion between the base time and the target time. �is process is query
independent and can be carried o�ine before a user issues a query.
We �rst introduce the way to represent terms in the base time and
terms in the target time within their respective semantic vector
spaces, Sb and St. �en, we construct a transformation matrix as a
general mapping function to bridge the two vector spaces.

4.1 Word Embedding
For capturing word semantics we utilize word embedding tech-
niques. Distributed representation of words by using neural net-
works was originally proposed in [32]. Mikolov et al. [28, 29]
improved such representation by introducing Skip-gram model
based on a simpli�ed neural network architecture for constructing
vector representations of words from unstructured text. Skip-gram
model has two important advantages: (1) it captures precise se-
mantic word relationships and (2) it can easily scale to millions of
words.

4.2 Transformation based on Anchor Mapping
Our goal is to compare terms in the base space and terms in the
target vector space to estimate their similarity and by this to �nd
temporal counterparts. Since, we cannot directly compare words in
the two di�erent semantic vector spaces (the features/dimensions
have no direct correspondence due to separate training), we train a
transformation matrix for building the basic connection between
the vector spaces. For this we use a set of training examples called
here anchor terms.

However, manually preparing su�ciently large sets of anchor
terms that would cover various topics/domains as well as exist in
any possible combinations of the base and target spaces requires
much e�ort and resources. We rely here on an approximation
procedure for automatically proposing anchor pairs. Speci�cally,
we select terms that have high frequency (e.g., man, city, device,
water) in both the base and the target spaces. �e intuition behind
this idea is that terms that are frequent in both spaces are more likely
to have stable meaning and also co-occur with many other terms.
�is observation has been validated by linguistic studies of several
Indo-European languages including English which discovered lower
semantic dri� of frequently used terms [25, 31]. Even if certain
anchor term pairs do not retain the same semantics across-time,
especially, when separated by relatively long time periods, still, the
results should not deteriorate signi�cantly when using su�ciently
high number of anchor term pairs.

Suppose there are u pairs of anchor terms {(xb1 , xt1 ),. . . ,(xbu , xtu )}
where xbi (e.g., man) is an anchor in one space (e.g., 1980s) and xti is
its counterpart term, that is, the term with the same literal form (i.e.,
man) in the other space (e.g., 2000s). Transformation matrix M is
established by minimizing the di�erences between Mxbi and xti (see
Eq. 1). �is is realized by minimizing the sum of Euclidean 2-norms
between the transformed query vectors and their counterparts.
Eq. 1 is used for solving the regularized least squares problem
with regularization component used for preventing over��ing (γ =
.02):

M = argmin
M

u∑
i=1




Mxbi − x
t
i




2

2
+ γ ‖M‖22 (1)

u denotes here the size of anchor term set which contains the top
5%1 frequent terms in the intersection of vocabularies of the two
corpora.

1We use 5% as this rate was experimentally veri�ed to result in the best performance
for transforming across domains separated by short time gap.
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4.3 Retrieval Model for Global Transformation
A�er obtaining the transformation matrix M, we can compute the
similarity of a query q in the base space with any term w in the
target space by multiplying the query’s vector representation with
the transformation matrix M, and then by calculating the cosine
similarity between the transformed vector and w ’s vector represen-
tation denoted by w. We call this approach Global Transformation
(GT).

Ssim (q,w) = cos(Mq,w) (2)

5 TRANSFORMATION BASED ON
DUAL HIERARCHICAL STRUCTURES

In Sec. 3, we explained the way to construct a single transformation
matrix by assuming that all the vocabularies in one space follow the
same mapping function, which is obviously a simpli�ed approach.
However, we noticed that performance drops for di�erent types of
queries when using Global Transformation (GT) (e.g., signi�cantly
lower performance for person and location queries, while relatively
good performance for objects as illustrated in Tab. 5). It suggests
the limitations of GT in mapping all the terms in semantic space
due to its lack of adaptation to di�erent semantic areas (i.e., query
independent transformation strategy of GT). To solve this problem,
we propose an advanced approach, called dual hierarchy-biased
term transformation, in which we train multiple transformation
matrices biased on semantic clusters to which a given query be-
longs. �e motivation behind this approach lies in the notion that
a single transformation matrix is too coarse and too general to serve
well for any possible queries. We believe that the combination of
”local” approaches designed for semantic subspaces should achieve
be�er performance (the conceptual comparison between GT and
dual hierarchy-based term transformation is visualized in Fig. 1).
GT is actually equivalent to a special case of the dual hierarchy-
based approach. It considers only global semantic correspondence
across the two vector spaces, while the dual hierarchy based trans-
formation takes into consideration the semantic correspondence
biased on semantic clusters (Sec. 5.2) as well as the structural cor-
respondence dependent on each query (Sec. 5.3 and 5.4). �e new
approach builds upon the key characteristic of word embedding
spaces such that semantically similar words are located close to
each other [28, 29]. We propose then a cluster-biased approach
in which each semantic cluster should be subject to its own speci�c
transformation mechanism. In the following sections, we �rst in-
troduce the way to construct semantic clusters in either space by
hierarchical clustering and we then explicate the procedure for
establishing the mapping function across clusters in two domains.

Figure 1: Conceptual comparison between GT and dual
hierarchy-based term transformation.

5.1 Hierarchical Clustering in Vector Space
Hierarchical Agglomerative Clustering (HAC), one of the methods
of cluster analysis, has been successfully used for building a hierar-
chy of clusters in a “bo�om up” clustering manner. In this paper,
we utilize the complete-linkage criterion2 to determine the distance
between clusters when merging the clusters, that is, the minimum
distance between elements of each cluster. �e distances between
words are measured by the inverse of cosine similarity between
their word embeddings. HAC processes are carried separately for
each vector space. A�er they are completed, we obtain two hierar-
chical structures which will support the proposed transformation
approach. Each word in either vector space belongs to a hierarchi-
cal path of the clusters that spans from each leaf cluster (the word
itself) to the root cluster that covers all the words.

5.2 Dual Hierarchy based Term
Transformation

As discussed in the beginning of Sec. 4, we are going to establish
transformation matrices biased on di�erent semantic clusters. �en
the mapping of a given query can be conducted by leveraging the
transformation matrices of the semantic clusters where the query
belongs to. Di�erent from training of the global transformation
which assigns equal importance to all the anchors (see Eq. 1), our
idea is to associate weights (λ) to the anchors based on their relation
to a given semantic cluster. Each cluster within the hierarchy will
then have its own distribution of weights used for biasing the
anchors when training the transformation matrix (see Eq. 3).

Mk = argmin
Mk

u∑
i=1

λi,k




Mkx
b
i − x

t
i




2

2
+ γ ‖Mk‖22 (3)

Mk is a transformation matrix for cluster Cbk . λi,k denotes the
weight of an anchor xi biased on cluster Cbk , which is computed by
applying discounting function as shown in Eq. 4. �e hypothesis
behind the anchor weighting lies in the fact that the anchor which
is “closer” to the computed cluster should have higher impact on
the transformation of the terms in that cluster. We compute the
weight of an anchor for a given cluster by the distance (number
of hops) to the nearest cluster containing the anchor within the
hierarchy tree. We will illustrate the discounting function by a toy
example later. �e weights are computed as follows:

λi,k =
1

LCb
k
− LCb

j
+ 1 (4)

where LCb
k

(or LCb
j

) denotes the length (the number of hops) of the

shortest path from cluster Cbk (or Cbj ) to the root of the hierarchy
tree; Cbj represents the cluster (1) which is on the shortest path
from Cbk to the root, (2) which contains the anchor xi and, at the
same time, (3) it is the nearest cluster to Cbk .

Toy Example. We present a toy example for explaining how to
calculate anchor weights for a given cluster. �e hierarchy tree of
the words in the base space in our example is shown in Fig. 2. We

2Complete-linkage method tends to create a fairly balanced tree compared to the
single-linkage and is also faster.
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are going to compute the anchor weights for the semantic cluster
Ck=4. Suppose the anchors for training the transformation matrix
are {x1,x2,x3}, then Tab. 1 computes the weights of the anchors
following Eq. 4. A�er computing the anchor weights, they are
normalized over all the anchors and input to Eq. 3 to obtain the
transformation matrix biased on cluster Ck=4.

Figure 2: Toy example of hierarchy tree in one space.

Table 1: Toy example of weights calculation for Ck=4 (for
simplicity, we removed the mark b representing the base do-
main).

anchor path Cj LCk=4 − LCj + 1 λi,k=4
x1 {C4,C1,C0} C4 2-2+1=1 1
x2 {C5,C1,C0} C1 2-1+1=2 1/2
x3 {C7,C2,C0} C0 2-0+1=3 1/3

Note that when k = 0 (root cluster), all anchor weights are equal,
which is as the same as the approach of the global transforma-
tion introduced in Sec. 3. Global transformation (Eq. 1) can be
then regarded as a special case of the dual hierarchy based term
transformation.

Based on the obtained transformation matrix Mk speci�c for a
given semantic cluster Cbk , the similarity of a query q in the base
space with any term w in the target space can be computed in a
similar way as the retrieval model for Global Transformation does,
but this time utilizing the cluster-biased transformation matrix Mk
(see Eq. 5). We call this approach Hierarchical Term Transformation
HT.

HT (q,w |Cbk ) = cos(Mkq,w) (5)
Since a term (e.g., query) belongs to many clusters within the

hierarchy tree and each cluster has its own transformation matrix,
across-time similarity can be computed by applying di�erent com-
binations of transformation matrices from clusters to which the
query belongs. Multiple variants of approaches are possible based
on the dual hierarchy framework to generate the ranking list of
candidate temporal counterparts. We will discuss several retrieval
models in detail in Sec. 5.5.

5.3 Cluster Correspondence
In this section, we propose another signal to improve the computa-
tion of the across-time term similarity. We utilize the correspon-
dence between the base space cluster to which the query belongs
and the cluster in the target space which contains the given coun-
terpart candidate. We consider that the hierarchy of each vector
space can be roughly regarded as a “is-a” relationship tree among
clusters where the clusters near the root represent more general
concepts. �e idea behind the cluster correspondence is as follows:
if there is good correspondence between terms across domains, there
should also exist good correspondence in their memberships in the

semantic clusters. Finding cluster mappings should thus help to mea-
sure the across-domain similarity from the perspective of structural
alignment.

To measure the correspondence between clusters of the both hi-
erarchies, we utilize the membership data of anchors in the clusters.
We compute the correspondence by assuming again that anchors
remain stable in the semantic hierarchies. A given cluster is repre-
sented by a vector of memberships over all the anchors, where 1
or 0 at position i denotes whether the cluster contains the anchor
xi or not. �e cluster correspondence is then computed by Eq. 6
where Cb

i and Ct
j are vector representations of Cbi and Ct

j .

CC(Cbi ,C
t
j ) = cos(C

b
i ,C

t
j) (6)

We will use the cluster correspondence between query and the
candidate counterpart in certain variants of the retrieval model.

5.4 Structural Correspondence
Besides Cluster Correspondence CC which re�ects pairwise se-
mantic similarity of clusters across spaces, another metric called
Structural Correspondence (SC) is set up to measure whether the
relative level of the cluster where the query belongs to within its
hierarchy is similar to that of its temporal counterpart candidate.
We approximate the position of the cluster on the query’s path by
its relative distance to the root. �e position of the cluster on the
counterpart’s path is measured in a similar way. �en SC is com-
puted by Eq. 7 and can be used as the signal for testing structural
alignment of clusters when constructing the way for combining
results from multiple transformation matrices.

SC(Cbi ,C
t
j ) = 1 −

�����LCb
i

Lq
−
LC t

j

Lw

����� (7)

whereCbi (Ct
j ) is the cluster on query’s (or counterpart’s) path. LCb

i
(LC t

j
) denotes the length (expressed in the number of hops) of the

shortest path from cluster Cbi (Ct
j ) to the root in the base space (in

the target space). Lq (Lw ) represents the length (i.e., hop count) of
the shortest path from the leaf node query (counterpart) to the base
root (target root).

5.5 Retrieval Model for Dual Hierarchy based
Term Transformation

In this section, we discuss the retrieval model by considering the
three above-introduced signals to compute across-time term simi-
larity. Eq. 8 computes the term similarity biased on the semantic
cluster Cbk on the path of query q where Ct

j is the cluster on the
path of the counterpart w . All the components in Eq. 8 have been
previously normalized.

Ssim (q,w |Cbk ) = HT (q,w |Cbk ) ·CC(C
b
k ,C

t
m ) · SC(Cbk ,C

t
m )

where Ct
m = argmax

C t
m ∈path(w )

CC(Cbk ,C
t
m )

(8)

To combine the results from di�erent semantic clusters, we pro-
pose to either select the maximum score as the �nal term similarity
degree between q and w , or the summation of the similarity scores
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at each hop.

Ssim (q,w) = max
Cb
k ∈path(q)

Ssim (q,w |Cbk ) (9a)

Ssim (q,w) =
∑

Cb
k ∈path(q)

Ssim (q,w |Cbk ) (9b)

6 EXPERIMENTS
We conduct experiments on the document collections spanning
short time periods as well as on the ones separated by longer time
gaps in order to evaluate the performance of the proposed methods.

6.1 Short Time Gap Datasets
We use the New York Times Annotated Corpus [33], which has
been frequently utilized in related studies [5, 34, 39]. It contains
over 1.8 million newspaper articles published from 1987 to 2007.
We test the tasks of searching from [2002,2007] to the two past
periods, [1987,1991] and [1992,1996]. Each time period contains
around half a million news articles, which is su�cient for training
word representations. We train the word embedding model for each
time period. On average, time periods have 337k unique terms a�er
removing terms with frequency less than 5. Based on the trained
semantic vector spaces, we build hierarchy tree by Hierarchical
Agglomerative Clustering (HAC) (complete-linkage) for each space
(see Sec. 5.1). �e construction of word embedding space as well as
the hierarchy trees are conducted o�ine.

6.2 Long Time Gap Datasets
To experiment with longer time gaps, we use the Times Archive3,
which contains 11 million digitalized news articles published from
1785 to 2009 in the “�e Times”. We focus on testing the perfor-
mance of the proposed approaches over the recent 70 years’ long
period (from 1939 to 2009) during which a large number of news
articles have been published and the quality of the archive is still
reasonably good4. Due to the non-uniform distribution of data
over time (recent periods have much larger amount of documents
than distant periods, e.g., the sizes of data for [2004,2009] and for
[1939,1955] are equal), we decided to split the dataset by size rather
than by equal time periods. Considering the total size of the dataset
of nearly 400GB, the selection criteria is set to be 20GB. We then
take non-overlapping time periods, each containing roughly 20GB
of data as time periods. We will experiment on searching from
[2004,2009] treated as a base period to the two periods in distant
past [1967,1976] and [1939,1955]. �e way of training word embed-
ding models and building semantic hierarchy trees for each tested
time period are the same as ones for the short time gap datasets.

To alleviate OCR impreciseness, we also propose an unsuper-
vised approach to correct OCR errors by automatically constructing
a dictionary for mapping incorrect word spellings into their correct
forms. To build the dictionary, we rely on three assumptions: (1)
the misspelled terms share similar context with its correctly spelled
form. Hence, the incorrectly spelled term should be positioned close
to its correct form in the vector space. (2) �e misspelled terms

3h�p://gale.cengage.co.uk/times.aspx/
4We have found relatively large number of OCR errors before this date resulting in
rapidly deteriorating quality of collection.

have their literal forms similar to the correctly spelled variant (edit
distance equals to one in our se�ings). (3) �e correctly spelled
term is more dominant (i.e., frequent) compared to its incorrectly
spelled versions. In general, we are checking the semantic neighbor
set C of any word w5 and then �nd such a word in C which meets
the above three requirements to consider it as the correct form ofw .
�e constructed mapping dictionary is then applied to the ranked
lists of candidate results as post-processing step to replace incorrect
spelling results with their correct variants.

6.3 Test Sets
To the best of our knowledge, there are no benchmark datasets for
our task. We then construct test sets based on carefully analyzing
various sources of history-related knowledge, the Wikipedia as well
as using Web search engines. We build test sets separately for each
tested period in NYT corpus and in Times Archive. �e test sets
contain queries in the base time and their temporal counterparts in
the target time.

�e tests sets used for the experiments on the NYT corpus extend
the ones utilized in [39]6, and have in total 225 query-to-answer
pairs for [2002,2007]→[1987,1991] and 100 query-to-answer pairs
for [2002,2007]→[1992,1996]. Each test set contains three types of
entities: persons, locations and objects. Persons include presidents,
prime ministers or chancellors of the most developed and popu-
lous countries (e.g., USA, UK, France, etc.) as well as the names of
popes and FIFA presidents. Locations include names of countries
or cities (e.g., Czechoslovakia, Berlin) that changed their names
over time, split into several countries, merged into another political
system, or become new capitals. Finally, objects cover instances
of devices (e.g., iPod, mobile phone, dvd), concepts (e.g., email),
companies/institutions (e.g., NATO, Boeing) or other objects (e.g.,
letter, euro). �e test pairs are publicly available7.

Similar to the way discussed above, we also create test sets for
the Times Archive. �eir size is 108 query-to-answer pairs for the
search task: [2004,2009]→[1967,1976] and 109 query-to-answer
pairs for [2004,2009]→[1939,1955]. �e test pairs are also available
online8.

6.4 Tested Methods
6.4.1 Baselines. We prepare �ve baselines as follows:
(1) Word embedding model without transformation (NT):

NT uses distributional representation for capturing word semantics
(see Sec. 4.1) same as the proposed methods do. However, instead
of training the document collections from two periods separately,
it trains a joint vector space by merging the document collections.
We can then evaluate the necessity of the transformation by testing
this method in comparison to the proposed methods.

(2) Hidden Markov Model (HMM) proposed by Berberich et
al. [5]: the key idea behind this method is to measure the degree of
across-time semantic similarity between two terms by comparing
their context words based on co-occurrence statistics by utilizing
a Hidden Markov Model. We select this approach as a baseline
5C contains the k-Nearest Neighbors of w , where k is set to 5.
6Initially, they contained 95 query-to-answer pairs for [2002,2007]→[1987,1991] and
50 query-to-answer pairs for searching from [2002,2007]→[1992,1996].
7h�p://www.dl.kuis.kyoto-u.ac.jp/∼adam/temporalsearch short extended.txt
8h�p://www.dl.kuis.kyoto-u.ac.jp/∼adam/temporalsearch long extended.txt
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because (a) its objective is identical to ours (searching for temporal
counterparts); (b) the input is unstructured data same as one used
in our approach (i.e., unprocessed temporal news article archive
such as New York Times dataset); (c) this method solves the general
problem of temporal counterpart �nding, hence, not only �nding
the name changes of the same entity as in [34].

(3) Global Transformation (GT) proposed by Zhang et al. [39,
40] maps the terms in one vector space to the other by training
a global transformation matrix as described in Sec. 4. We set GT
as a control baseline to verify the e�ectiveness of our proposed
transformation technique based on dual hierarchical structures as
described in Sec. 5. We use 5% as the rate of anchor terms for both
GT and for our proposed methods as this number was found to
produce the best results for GT.

(4) Cluster Correspondence (CC) and Cluster Correspon-
dencewith Structural Correspondence (CC+SC) are also tested
in order to examine the e�ect of leveraging only the hierarchy/cluster
information without applying semantic transformations.

6.4.2 Proposed Methods. As introduced in Sec. 5, we propose
three components to perform across-time transformation: Hier-
archical Transformation (HT), Cluster Correspondence (CC) and
Structural Correspondence (SC). In the experiments, we test sev-
eral combinations of these features to evaluate their impact on the
performance of search task.

(1) HT conducts term transformation at each cluster on the path
of query to the root following the base hierarchical tree (see Sec. 5
and Eq. 8 without the CC and SC components).

(2) HT+CC considers the semantic term transformation of clus-
ters in the hierarchy tree that the query belongs to (same as HT),
however, it also utilizes the cluster correspondence between the
cluster the query belongs to and the one that contains the candidate
counterpart in target hierarchy tree (see Sec. 5.3 and Eq. 8 without
the SC component).

(3)HT+SC takes into consideration the semantic correspondence
and the structural correspondence. It �nds counterparts in target
hierarchy tree by prioritizing terms that have similar path structure
in the target hierarchy as that of query in the base hierarchy tree
(see Sec. 5.4 and Eq. 8 without the CC component).

(4) HT+CC+SC �nally combines all the features (see Eq. 8). For
each proposed method, the �nal ranking list is realized either by
the maximum score at a certain cluster that the query belongs to
(e.g., HTmax, {HT+CC}max, {HT+SC}max, {HT+CC+SC}max)
or the sum of the score from each hop (cluster) on the query’s path
(e.g., HTsum, {HT+CC}sum, {HT+SC}sum, {HT+CC+SC}sum)
(see Eqs. 9).

7 EVALUATION
7.1 Evaluation Measures
We use Mean Reciprocal Rank (MRR) and Mean Average Precision
(MAP) as main measures for evaluating the ranked search results
(both range from 0 to 1). �e higher the obtained value, the more
correct the tested method is. Besides MRR and MAP, we also report
precision @1, @5, @10, @20 and @50. �e precisions are equal to
the rates of queries for which the correct counterpart term is found
in the top 1, 5, 10, 20 and 50 results, respectively. We conduct t-test
to measure statistical signi�cance of the results.

Table 2: Main results of experiments over short time gap
datasets. Results marked with * are statistically signi�-
cantly (p < .1) better than the best baseline GT. All the pro-
posed methods signi�cantly (p < .01) outperform the base-
line HMM in both MRR and MAP.

(a) [2002,2007]→[1992,1996]

MRR
(Impr.%)

MAP
(Impr.%)

P@1
(%)

@5
(%)

@10
(%)

@20
(%)

@50
(%)

NT 0.119 (-34.6) 0.136 (-39.9) 3.8 17.0 23.8 30.1 41.7
HMM 0.112 (-38.4) 0.145 (-36.0) 3.3 16.3 17.3 25.8 33.5
GT 0.182 0.226 7.6 27.2 33.7 50.0 63.0
CC 0.138 (-24.2) 0.188 (-17.2) 4.3 21.7 28.3 40.2 72.8
CC+SC 0.126 (-30.7) 0.174 (-23.2) 6.5 18.5 26.1 33.7 58.7
HT 0.213 (+16.9) 0.287 (+26.7) 8.7 32.6 42.4 58.7 77.2
HT+CC 0.231 (+27.1) 0.306 (+35.2) 13.0 33.7 46.7 56.5 71.7
HT+SC 0.235* (+29.0) 0.311* (+37.3) 13.0 35.9 45.7 54.3 78.3
HT+CC+SC 0.238* (+31.0) 0.317* (+40.1) 13.0 35.9 43.5 60.9 73.9

(b) [2002,2007]→[1987,1991]

MRR
(Impr.%)

MAP
(Impr.%)

P@1
(%)

@5
(%)

@10
(%)

@20
(%)

@50
(%)

NT 0.129 (-27.8) 0.189 (-28.9) 4.5 17.9 21.4 28.4 35.8
HMM 0.101 (-43.5) 0.150 (-43.6) 4.0 11.1 16.4 22.2 31.1
GT 0.179 0.266 10.2 23.6 35.1 49.3 69.8
CC 0.141 (-21.0) 0.215 (-19.2) 5.3 20.9 30.7 53.8 74.7
CC+SC 0.147 (-17.9) 0.229 (-14.0) 6.2 20.9 30.2 47.1 76.0
HT 0.216* (+21.0) 0.349* (+31.4) 11.1 32.4 43.6 63.1 78.7
HT+CC 0.215* (+20.3) 0.345 (+29.8) 12.4 30.2 41.3 54.7 71.6
HT+SC 0.215* (+20.3) 0.345 (+29.9) 10.7 31.6 46.7 62.2 76.9
HT+CC+SC 0.219* (+22.7) 0.353* (+32.9) 12.4 30.2 40.9 55.6 75.1
N We show HTmax , {HT+CC}max , {HT+SC}max , {HT+CC+SC}max , {CC+SC}max , CCmax in
this table as they all had be�er performance than the corresponding “sum” strategies.

7.2 Results Analysis
�e evaluation results of our methods are summarized in Tab. 2
for the short and in Tab. 3 for long time separation. In addition,
Tab. 6 presents several example results from the experiments on
the short and long time gap datasets. �e main observation is that
most of our proposed methods statistically signi�cantly outperform
the most competitive baseline (GT) over both the short and long
periods datasets. In the following subsections we �rst focus on
the results over the short time gap datasets analyzing them from
diverse perspectives, and then we discuss the results over the long
time gap datasets as well as any performance di�erences resulting
from the increase of the time gap.

7.2.1 Improving State-of-Art. As shown in Tab. 2a and 2b, the
method HT+CC+SC statistically signi�cantly (p < .1) outperforms
the best baseline GT and also achieves signi�cantly be�er results
(p < .01) than another state-of-art baseline HMM. �is is true for
MRR and MAP measures for both the tested search periods of the
short time gap datasets. �e poorer performance of HMM when
compared with methods that make use of word embedding spaces
is because HMM is still a bag of words’ based approach, albeit an
improved one. Its assumption of li�le change in the terms’ context
cannot held any more, especially, when increasing the time gap
between the base and target datasets (when contrasting its results
in Tab. 2a and 2b).
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Table 3: Main results of experiments over long time gap
datasets. Results marked with * are statistically signi�-
cantly (p < .1) better than the state-of-art baseline GT. † indi-
cates those statistically signi�cantly better than GTmethod
(p < .05).

(a) [2004,2009]→[1967,1976]

MRR
(Impr.%)

MAP
(Impr.%)

P@1
(%)

@5
(%)

@10
(%)

@20
(%)

@50
(%)

GT 0.061 0.103 3.3 7.7 12.0 14.3 26.4
CC 0.092 (+49.3) 0.165 (+60.5) 5.6 12.0 12.0 19.4 24.1
CC+SC 0.098 (+59.8) 0.175 (+70.5) 6.5 12.0 15.7 17.6 25.0
HT 0.117† (+89.8) 0.182* (+77.7) 6.5 16.7 19.4 27.8 36.1
HT+CC 0.102* (+66.7) 0.167 (+62.6) 6.5 11.1 13.9 23.1 30.6
HT+SC 0.120† (+94.6) 0.204† (+98.3) 8.3 13.0 17.6 25.0 34.3
HT+CC+SC 0.104* (+69.9) 0.179* (+74.4) 6.5 13.0 14.8 21.3 29.6

(b) [2004,2009]→[1939,1955]

MRR
(Impr.%)

MAP
(Impr.%)

P@1
(%)

@5
(%)

@10
(%)

@20
(%)

@50
(%)

GT 0.054 0.083 0.0 13.9 18.5 21.3 28.7
CC 0.064 (+18.4) 0.070 (-15.5) 2.2 11.5 12.8 16.5 23.9
CC+SC 0.070 (+29.4) 0.102 (+23.3) 4.4 8.9 7.3 11.9 23.9
HT 0.102† (+89.1) 0.156* (+89.0) 5.5 16.6 20.2 25.7 30.3
HT+CC 0.078 (+44.9) 0.121 (+46.2) 3.3 14.0 17.4 21.1 29.4
HT+SC 0.099† (+82.7) 0.144* (+74.7) 5.5 16.6 17.4 22.9 37.6
HT+CC+SC 0.082* (+52.2) 0.123 (+49.1) 3.3 12.8 17.4 22.9 30.3
N We show HTsum , {HT+CC}sum , {HT+SC}sum , {HT+CC+SC}sum , {CC+SC}sum , CCsum in
the table as they all achieved higher performance than the corresponding “max” strategy.
N For long time gap datasets, we only use the best performing baseline GT.

When comparing with baseline GT, we can observe on average
23% increase in MRR and 33% increase in MAP for all the four pro-
posed methods. It con�rms the previously mentioned hypothesis
that the transformation biased on dual hierarchy helps to construct
be�er mapping between terms in the two vector spaces.

7.2.2 Necessity of Transformation. �e next observation is that
method NT achieves relatively low performance (see Tab. 2). NT
essentially assumes a static world in which every term is supposed
to retain its semantics across the di�erent domains (or should have
the same “position” in a single joint vector space created on the
merged set of documents from the di�erent time periods). Yet,
many terms change their meaning and usage in di�erent times.
�us, their relative “positions” w.r.t. to other terms should change,
too. Without the transformation, the information on the relative
changes of term positions in the vector spaces is lost.

7.2.3 Necessity of Semantic Correspondence. Looking at the re-
sults in Tab. 2 and 3, we can observe that CC and CC+SC continue
to under-perform all the proposed methods over both the short and
long time gap datasets. Compared with our methods, on average,
CC+SC is 27% lower in MRR, 29% lower in MAP, while CC has 30%
lower results in MRR and 38% lower in MAP. �is indicates that
leveraging hierarchy/cluster information only is not enough and
that the semantic transformation is necessary in our task.

7.2.4 Analysis of Di�erent Signals for Across-Time Similarity
Computation. In Sec. 5, we have proposed computing additional
features: CC and SC for boosting the search performance. As
seen in Tab. 2a, we can observe an increase of performance by
incorporating the information about structural alignment together

with the semantic transformation. HT+CC has 8.5% be�er perfor-
mance than HT and HT+CC+SC achieves 3.3% be�er results than
HT+CC when considering MRR. However when it comes to more
distant past (see Tab. 2b), the impact of the structural alignment is
decreasing. In fact, when testing over longer time gap datasets, in-
corporating CC and SC components even harms the performance:
in Tab. 3a, HT+SC achieves be�er result than HT+CC+SC and in
Tab. 3b, HT performs best. We can then conjecture that the “local”
hierarchy structure changes as time passes.

7.2.5 E�ect of Searching across Long Time Periods. When com-
paring the results in Tab. 3 and Tab. 2, we can observe a decrease
in both MRR and MAP when performing search in the distant past.
�e reasons as we noticed is that many anchor terms changed se-
mantics. �e remedy is to decrease the number of anchor terms
used in Eq. 1 as well as in Eq. 39. Another observation is rather
dramatic decrease in the performance of the baseline GT over the
long time gap datasets (68% decrease in MRR and 90% decrease
in MAP). Our method HT also returns worse results than for the
short term gap datasets, yet, the performance drop is smaller (49%
decrease in MRR and 47% decrease in MAP). In other words, the
relative improvement of HT in relation to GT for the distant past
is higher than that for the near past.

7.2.6 E�ect of Di�erent �eries. We analyze here the perfor-
mance of the methods over di�erent categories of queries distin-
guished by: (1) frequency in the datasets and (2) the query type10.

Tab. 4 presents MRR scores for queries divided by their frequen-
cies. To distinguish “frequent” from “infrequent” queries, we order
queries by their frequencies in the base datasets in descending order.
�e ones in top 50% are regarded as “frequent” queries while the
remaining half become “infrequent” ones. We see in Tab. 4 that the
search task is “easier” for queries which are frequently mentioned in
the datasets. All the methods achieve higher MRR for the frequent
queries than for the infrequent ones over both the short and long
time gap datasets. �e proposed methods are capable of enhancing
the performance of frequent queries by 68% and infrequent queries
by 25%, on average, when compared to the results of GT.

Tab. 5 demonstrates the evaluation results categorized by query
type: persons, locations and objects. Compared to the objects,
searching for corresponding persons and locations across-time
tends to be more di�cult, resulting in lower MRR scores. It might
be because objects are usually more speci�c and their contexts may
be more �xed, hence, undergoing less variation. On the contrary,
locations and persons usually appear in a large array of contexts
(i.e., in many di�erent circumstances, in relation to diverse types
of events, diverse contexts, etc.). Comparing with GT our meth-
ods improve MRR score for queries in all the range of categories,
especially, for locations, the average increase in MRR is 93%.

8 CONCLUSIONS
�is work approaches the problem of �nding temporal counterparts
as a way to build a “bridge” across di�erent times. Knowing cor-
responding terms across time can have direct usage in supporting
search within temporal document collections or can be helpful for
9To generate the results in Tab. 3b we used 3% of the top frequent anchor terms (as
determined on the held-out calibration set) instead of 5% used for the other periods.
10Considering both the short and long time gap datasets.
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Table 4: MRR scores for queries by frequency
Short Time Gap Long Time Gap

Frequent Infrequent Frequent Infrequent
GT 0.203 0.156 0.053 0.028
HT 0.239 0.191 0.111 0.050
HT+CC 0.250 0.189 0.110 0.031
HT+SC 0.248 0.193 0.121 0.036
HT+CC+SC 0.258 0.191 0.112 0.026

Table 5: MRR scores for queries by query type
MRR Persons (Impr.%) Locations (Impr.%) Objects (Impr.%)
GT 0.074 0.075 0.193
HT 0.089 (+20.2) 0.138 (+85.0) 0.237 (+23.1)
HT+CC 0.084 (+14.2) 0.149 (+99.1) 0.232 (+20.5)
HT+SC 0.087 (+18.0) 0.145 (+94.5) 0.240 (+24.8)
HT+CC+SC 0.083 (+13.2) 0.144 (+93.3) 0.241 (+25.2)

automatically constructing evolution timelines and for clarifying
word meaning. To �nd counterpart terms across time, we propose
an advanced transformation technique based on dual hierarchical
structures and on considering not only semantic but also the struc-
tural alignment. �rough experiments we demonstrate that the
proposed approaches outperform the state-of-art methods on both
the short and long time gap datasets. We also illustrate in details the
e�ectiveness of the three proposed signals as well as the limitations
of the two structural signals over long time gap datasets. �anks
to the systematic and transparent character of our approach it is
possible to understand the e�ect and role of each component on the
quality of generated results. Finally, we note that our methods are
fully unsupervised and work on a raw text without the requirement
for any external ontologies, lexicons nor knowledge bases speci�c
to any particular time periods. �ey can be thus applied to any
combinations of time periods and underlying document collections.

In the future, we plan to investigate the way to detect temporal
counterparts from particular viewpoints or particular senses. We
also plan to extend the similarity computation to larger text units
like sentences or documents.
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Table 6: Example results for the short and long time gap datasets. For each query (“P” for persons, “L” for locations and “O” for
objects), we show the returned lists by the best performing proposedmethods for each time period and by the best performing
baseline GT. Bold font indicates the ground truth, and the numbers in parenthesis are the ranks of the ground truth answers
within the returned list.

[2002,2007]→[1992,1996]
�ery Ranking List Returned by HT+CC+SC Ranking List returned by GT

Merkel (P) Kwasniewski, Balladurs, Kono, Chirac . . . Chancellor Kohl (13) Balladurs, Meri, Kebich, Zepeda . . . Chancellor Kohl (149)
Annan (P) Boutros Boutrosghali (1), Juppe, Krajisnik, Holbrooke, Silajdzic Boutros Boutrosghali (1), Juppe, Krajisnik, Holbrooke, Silajdzic

Aznar (P) Silvio Berlusconi, Lamberto Dini, Hun Sen, Jeanluc Dehaene . . .

Felipe Gonzalez (8)
Hun Sen, Prince Ranariddh, Kuchma, Javier Solana . . . Felipe
Gonzalez (179)

Slovakia (L) Romania, Portugal, Bulgaria . . . Slovak Republic (109) . . .

Czechoslovakia (115)
Romania, Portugal, Bulgaria . . . Slovak Republic (131) . . .

Czechoslovakia (186)

Czech (L) Hungary, Bulgaria, Austria . . . Czechoslovakia (11) . . . Czech
Republic (158)

Hungary, Bulgary, Austria . . . Czechoslovakia (11) . . . Czech
Republic (167)

Berlin (L) Paris, Vienna, Budapest . . . Berlin (30) . . . Bonn (64) Paris, Vienna, Budapest . . . Berlin (35) . . . Bonn (62)
iPod (O) laptop (1), adapter, desktop, CD player (4) . . . PDA (20) adapter, deskop, CD player (3) . . . laptop (5) . . . PDA (20)

Firefox (O) web browser, browser, Netscape Navigator (3), Netcruiser (4),
Internet Explorer (38)

web browser, bjc600 . . . Netcruiser (14), Netscape Navigator
(21), Internet Explorer (35)

Nato (O) Nato (1), natoled peacekeeping, nationalist serb, krajina serb nationalist serb, hezbollah guerrillas, krajina serb . . . Nato (7)

[2002,2007]→[1987,1991]
Singh (P) Singh, Jatoi, Gandhi (3), Junejo, Chandra shekhar Pollino, Lopez, Scopino, Rodriguez . . . Gandhi (226)

Jacques Rogge (P) IOC, Mike Jacki, Robert Helmick, Werner Fricker . . . Samaranch
(14)

Mike Jacki, Robert Helmick, Marat Gramoc, Werner Fricker . . .
Samaranch (92)

Vladimir Putin (P) Boris Yeltsin (1), Leonid Brezhnev, Helmut Kohl, Francois Mit-
terrand . . . Mikhail Gorbachev (9)

Boris Yeltsin (1), Leonid Brezhnev, Helmut Kohl, Francois Mit-
terrand . . . Mikhail Gorbachev (9)

Myanmar (L) �ailand, Pakistan, Bangladesh . . . Burma (50), Myanmar(51) �ailand, Pakistan, Bangladesh . . . Burma (50) . . . Myanmar
(86)

Czech (L) Czechoslovakia (1), Slovakia, Netherlands, Sweden Finland,
Scandinavian countries

Netherlands, Sweden Finland, Czechoslovakia (3) . . . Belgium,
Finland,

Macedonia (L) Rwanda, Albania, Myanmar, Tirana . . . Yugoslavia (53) Rwanda, Albania, Myanmar, Tirana . . . Yugoslavia (95)

Boeing (O) Airbus (1), Mcdonnell Douglas (2), airbus industry, Boeing (4),
Taiwan Aerospace

Boeing (1), 777s, Daimler, Airbus (6) . . . Mcdonnell Douglas
(12)

Linux (O) Unix (1), so�ware, OS2 (3), industrystandard . . . MSDOS (30) so�ware, industrystandard, Unix (3) . . . MSDOS (52) . . . OS2
(62),

spreadsheet (O) Lotus 123 (1), database (2), wordprocessing . . . spreadsheet
(19) . . . quattro pro (43)

database (1), wordprocessing . . . spreadsheet (13) . . . quattro
pro (72) . . . Lotus 123 (110)

[2004,2009]→[1967,1976]
�ery Ranking List Returned by HT+SC Ranking List returned by GT

Schröder (P) Wagg, Scliroder, Grossart, Whitburgh . . . Brandt (14) Munchmeyer, Rmani, Turban, Whitburgh . . . Brandt (485)

Chirac (P) Pompidou (1), Mi�errand . . . Poher (25), d’Estaing(26) . . .
Gaulle (793)

Tsatsos, Pompidou (30) . . . Poher (604), d’Estaing(479) . . .
Gaulle (929)

Medvedev (P) Filbinger, Brezhnev (2), Podgorny, Lunkov, Alinister Brezhnev (1), Sayem, Chissano, Filbinger, Karamnanlist
Zapatero (P) Rodriguez, Portillo, Seinor, Jumenez . . . Suarez (19) Garrigues, Concalves, Calazans, Portillo . . . Suarez (46)
Mumbai (L) Bombay (1), Karachi, Delhi, Dacca, Delbi Jakarta, Kualalumpur, Manila, Rangon . . . Bombay (11)
Sri Lanka (L) Sri Lanka (1), Ceylon (2), India, Colomo, Pakistan, Indonesia Fiji, Pakistan, Madagascar . . . Sri Lanka (22) . . . Ceylon (126)
Myanmar (L) Burma (1), �ailand, Laos, Indonesia, Guam Yemen, Indonedia, �ailand, Maldives . . . Burma (102)

Berlin (L) Munich, Berlin, Moscow, Vienna . . . Bonn (21) Prague, Berlin, Moscow, Munich . . . Bonn (485)

[2004,2009]→[1939,1955]
�ery Ranking List Returned by HT Ranking List returned by GT

Putin (P) Kremlin, Kabanov . . . Malenkov (4) . . . Khrushchev (16) . . .
Stalin (55)

Zorin, Vinogradov, Malenkov (22) . . . Stalin (321) . . .

Khrushchev (353)

Kwasniewski (P) Celal, President, Chamoun . . . Raczkiewicz (62) . . . Bierut
(709)

Omukama, Mostras, Celal . . . Raczkiewicz (184) . . . Bierut
(747)

Berlusconi (P) minister . . . Segni (8) . . . Scelba (120) . . . Pella (266) . . .

Gasperi (441)
signor Segni (24) . . . Scelba (247) . . . Pella (507) . . . Gasperi
(632)

Koizumi (P) minister . . . Katayama (3) . . . Hatoyama (12) . . . Yoshida
(350) . . . Shidehara (544)

minister . . . Katayama (4) . . . Hatoyama (28) . . . Yoshida
(516) . . . Shidehara (778)

Mumbai (L) Bombay (1), Delhi, Karachi, Rangoon, Beirut Delhi, Panjim, Rangoon, Cairo . . . Bombay (9)
Russia (L) Poland, Finland, Czechoslovakia, Bulgaria . . . Soviet (61) Finland, Yugoslavia, Poland, Czechoslovakia . . . Soviet (159)

Sri Lanka (L) India, Colombo, Ahmsd, Indonesia . . . Ceylon (6) India, Colombo, pakistan, Indonesia . . . Ceylon (289)
�ailand (L) Indonesia, Philippines, Siam (3), Malaysia, Manila China, Hongkong, Laos, Siam (12) , Malaysia
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