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ABSTRACT
Conversation generation as a challenging task inNatural Language
Generation (NLG) has been increasingly attracting attention over
the last years. A number of recent works adopted sequence-to-
sequence structures along with external knowledge, which suc-
cessfully enhanced the quality of generated conversations. Never-
theless, few works utilized the knowledge extracted from similar
conversations for utterance generation. Taking conversations in
customer service and court debate domains as examples, it is evi-
dent that essential entities/phrases, as well as their associated logic
and inter-relationships can be extracted and borrowed from similar
conversation instances. Such information could provide useful sig-
nals for improving conversation generation. In this paper, we pro-
pose a novel reading and memory framework called Deep Reading
Memory Network (DRMN) which is capable of remembering use-
ful information of similar conversations for improving utterance
generation. We apply our model to two large-scale conversation
datasets of justice and e-commerce fields. Experiments prove that
the proposed model outperforms the state-of-the-art approaches.
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1 INTRODUCTION
Over the past years, chatbot technologies and conversation min-
ing approaches have been actively explored and applied in many
tasks and applications for a variety of purposes including support-
ing users in their decision making, e.g., in e-commerce customer
service and legal justice consulting. These groundbreaking devel-
opments typically utilize big data and deep learning technologies,
which harness in-depth semantic and discourse information of con-
versations and apply sophisticated learning models.

In contrast to classical rule-based [53] and template-based [43,
56] approaches applied for conversation generation, sequence-to-
sequence models [2, 30, 49] are able to understand sequential de-
pendencies between conversation utterances which is crucial for
content generation [46, 52]. Recently, external knowledge has been
also utilized to further improve the performance of utterance gen-
eration. For instance, open-domain, unstructured knowledge has
been employed [12, 40, 58, 61], while in other cases, domain-specific
knowledge bases (organized based on triples) have been used in
task-oriented conversations [7, 28, 31, 57]. Furthermore, large-scale
knowledge graphs have also recently been employed [17, 35, 59].
Although the above-mentioned works allowed achieving superior
results, constructing external knowledge bases can be quite an ex-
pensive and arduous task. Additionally, the low adaptability and
transferability of domain knowledge restrict their real-world appli-
cations. Therefore, further efforts are required in order to address
these challenges.

Equivalent Shared Memory (ESM) is a phenomenon that can be
observed in conversation corpora, especially, between conversa-
tions belonging to the same domain. While the detailed contents
of different conversations vary, there are certain common patterns
which can be considered as the common backbone memory. Such
shared memory can be then useful for supporting the utterance
generation task. As portrayed in the example in Figure 1, a tar-
get legal conversation discourse (one on the left) and a selected
reference prior conversation (on the right) share certain common
patterns (i.e., ESM). Then the utterance generator is able to copy
the utterance (in this case the judge’s question) from the reference
conversation and paste it into the Target Conversation (TC) con-
text. This scenario can also occur in other conversation corpora,
e.g., customer service, where an agent may repeat the same or a
similar responses as ones in past dialogues.

Motivated by these observations, we propose a novel model to
discover ESM by extracting critical words, phrases, and discourse
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Target Conversation (TC) Equivalent Shared memory Similar Conversation (SC)
…… …… ……

Judge
Now, I would like to ask the plaintiff 
about the facts in this case. What is your 
relationship with the defendant?

Judge What is ….. relationship ….. Judge
The court need to investigate this case: 
what is the relationship between the plaintiff 
and defendant?

Plaintiff A friend introduced him. Plaintiff Friendship.

Judge Why did the defendant to borrow your 
money ? Judge ……defendant to borrow…… Judge What was the purpose of the defendant to 

borrow money from the plaintiff ?

Plaintiff He said to be in desperate need of funds 
to do beer business. Plaintiff The need of business capital turnover.

Judge How was the loan given to him? Judge ……loan…… Judge Who provided the loan agreement?
Plaintiff In cash. Plaintiff A friend.
Judge [Generation] Judge [Copy from Similar Dialogue] Judge Is there any agreed interest ?

Generation
Reading

Memory

������

������

������

Figure 1: A toy case in our judicial dataset. We can generate the next utterance by reading similar conversations and memo-
rizing related entities, phrases as well as sentences.

information from similar conversations. The proposed model, the
Deep Reading Memory Network (DRMN), tries to reproduce the
human decision-making process, in resemblance to a human brain
which ”retrieves” similar memories to utilize them for generating
the next utterance in an ongoing conversation. DRMN treats the
last utterance1 [64] as a query and Similar Conversations (SC) as
a search database. The query is issued to retrieve from the search
database the information most relevant for the next utterance to
be issued.

To verify this hypothesis and to validate the proposed model,
we conduct experiments on two large-scale conversation datasets
from different domains - court debate dataset from a legal field
and customer service dataset from an e-commerce field. We apply
DRMN to the above two datasets and assess the model perfor-
mance based on both automated and human evaluation. The ex-
perimental results indicate that DRMN significantly outperforms
the baseline models.

Our study contributes to the growing body of research in ex-
ploring conversation generation. The particular contributions of
this paper are as follows:
• We propose a novel end-to-end model, called the Deep Reading

Memory Network, for the conversation generation task to ex-
plore Equivalent Shared Memory from past conversations.

• We demonstrate that the proposed model has sufficient domain
adaptability and generalization ability by experimenting on two
datasets that originate from different domains - court debate and
customer service conversation datasets. Experimental results show
that our model produces the best results on both the datasets
compared to the state-of-the-art methods.

• To support and motivate other scholars for further investigat-
ing this novel and an important research problem, we make the
experimental datasets and code publicly available2.

1The last utterance is usually most relevant to the forthcoming utterance to be
generated.
2https://github.com/jichangzhen/DRMN

2 RELATEDWORK
2.1 Conversation Generation
Maintaining intelligent conversations to facilitate life in the real
world has been the long-term goal of Artificial Intelligence (AI).
In this regard, recently, the research in conversation generation,
which is an important task in Natural Language Processing (NLP),
has generated impressive achievements.

In the early years, researchers mostly adopted rule-based and
template-based methods: for example, Joseph et al. [53] proposed
to generate responses by reassembling rules associated with se-
lected decomposition rules. Jost et al. [43] attempted at building
systems that learn what constitutes a good conversation strategy
through trial-and-error interaction.

In the recent years, due to the capabilities of deep neural net-
works, sequence-to-sequence models [2, 18, 20, 30, 36, 49] become
popular. They are widely used in conversation generation allow-
ing to achieve significant improvements. For example, [46, 52] sup-
plement the classic attention model with contextual information.
[6, 8, 65] solve the problem of the lack of diversity and boring
responses being generated for open-ended utterances. The copy
mechanism [15, 44] and hierarchical LSTM [60] led to increased re-
search in text generation. EED [38] used example vectors to guide
the generation of dialogue. CCN [19] applied a hierarchical en-
coder and cross-copying method to the field of conversation gener-
ation. The introduction of Transformers [51] brought text genera-
tion to a new level. Tranformer-based models are also widely used
in conversation generation [3, 62, 64].

More recently, employing external knowledge to conversation
generation became a popular approach: [12, 40, 58, 61] utilized un-
structured knowledge for conversation generation. Additionally,
structured knowledge triples have also been widely employed in
the conversation generation task [55, 57]. Knowledge graphs as
larger-scale external knowledge sources can also be utilized in con-
versation generation tasks [35, 59, 63].
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Figure 2: The overall structure of DRMN. The model is divided into three components, (1) Conversation Representation: it is
used for encoding the target conversation; (2) Equivalent Shared Memory: it is used to retrieve the similar conversations and
construct ESM and (3) Utterance Generation: it is used for generating utterances.

Existing works have achieved superior results, but the extensive
external knowledge construction and difficulty of domain adapta-
tion restrict their real-life applications.We note that the model pro-
posed in this paper does not use any external knowledge and can
achieve good results in the general-domain conversation genera-
tion.
2.2 Memory Networks
Sequence-to-sequence models rely on RNN [9] and LSTM [18] to
improve the word-dependency memory in the sentence. However,
the memory capacity of RNN [9] and LSTM [18] is very limited.
They usually only remember a dozen time steps at most. Therefore,
when the length of utterance increases or the number of utterances
in a dialogue grows, the sequence-to-sequence models cannot sat-
isfy the requirements of conversation generation systems.

Memory network [54] was originally proposed by Facebook AI.
It was initially used for reasoning in question answering systems.
Later, the end-to-end memory network was proposed [48, 54] to
solve the problem of the memory being too short in traditional
sequence-to-sequence models. Afterwards, [14] proposed storage
memory using stack and queue structure. [34] introduced key-value
memory networks, increasing the scale of memory based on an
end-to-end memory network.

Memory networks have been also widely used in recent conver-
sation systems: [23] proposed a selectively overwritingmechanism
for more efficient Dialogue State Tracking (DST) by the memory

network; [50] proposed to create the documentmemorywith some
anticipated responses. [27] introduced a Heterogeneous Memory
Networks (HMNs) to simultaneously utilize user utterances, con-
versation history, and background knowledge tuples. [5] proposed
to use neural models to learn personal embeddings in conversa-
tion. In addition, memory networks have been also widely used in
other natural language processing tasks, for instance in: text classi-
fication [11, 37], question answering system [16, 22], information
extraction [24, 42], text generation [25, 32] and language models
[41].

Different from the previousmemory network structures,DRMN
uses the last utterance of the target conversation as a query, while
every utterance in the equivalent shared memory is used as key
and value. It also adopts self-attention structure in the memory
module, and it allows multiple loops’ filtering of effective informa-
tion in the memory process.

3 DEEP READING MEMORY NETWORK
In this section, we introduce the details of the proposed Deep Read-
ing Memory Network (DRMN) model, in which we establish an
ESM module between the context of the target conversation and
other historical conversationswhich have similar semantics to help
generate the next utterance.The overall framework of the model is
shown in Figure 2. The proposed framework has three major com-
ponents:



(1) Conversation Representation: We propose to encode each
conversation fragment based on hierarchical infrastructure con-
sisting of utterance representation layer and conversation repre-
sentation layer (Section 3.1).

(2) Equivalent Shared Memory: We introduce the method for
discovering similar conversations by using the pre-trained RoBERTa
model to retrieve candidates and then constructing Equivalent
Shared Memory based on these candidates (Section 3.2).

(3) Utterance Generation: Based on the extracted contextual in-
formation of the target conversation as well as the equivalent
sharedmemory constructed from similar conversations, we fur-
ther employ pointer generationmechanism to generate the next
utterance (Section 3.3).

3.1 Conversation Representation
In order to represent the conversation fragment, we make the fol-
lowing definition: given a conversation 𝐷 = {(𝑈 , 𝑅)𝐿} containing
𝐿 utterances, 𝑈 and 𝑅 represent the utterance and the role of a
speaker, respectively, where each utterance in the conversation is
expressed as 𝑈𝑖 = {𝑤𝑖1,𝑤𝑖2, ...,𝑤𝑖𝑙 }, with 𝑤 being a word and 𝑙

denoting the length of the utterance. Note that we use 𝐷𝑑 to rep-
resent target conversation, and the similar conversation will be de-
noted by 𝐷𝑔 .

It should be pointed out that the role information can be critical
for conversation generation since different characters taking part
in the conversationmay not necessarily share the same vocabulary
space (e.g., plaintiff, defendant, customer or service staf). There-
fore, we take role information into consideration in conversation
representation. We concatenate the role 𝑅𝑖 with each utterance𝑈𝑖

as a sentence: 𝑆𝑖 = [[𝑅𝑖 ,𝑤𝑖1], [𝑅𝑖 ,𝑤𝑖2], ..., [𝑅𝑖 ,𝑤𝑖𝑙 ]]. The conversa-
tion can be expressed as𝐷 = {𝑆1, 𝑆2, ..., 𝑆𝐿}. For utterance informa-
tion, we utilize word2vec [33] to construct the initial word vectors.
For role information, we take the randomly initialized vectors.

3.1.1 Utterance layer. The Bidirectional Long-Short Term Mem-
ory Network (Bi-LSTM) [18] has superior performance in repre-
senting sequential text. We apply it to hierarchically encode each
conversation. For the utterance layer, the encoder represents a sen-
tence with hidden representation ℎ𝑑𝑖 = {ℎ𝑑𝑖1, ℎ

𝑑
𝑖2, ..., ℎ

𝑑
𝑖𝑙
}, as defined

below:
ℎ𝑑𝑖 𝑗 = Bi − LSTM(𝑒 (𝑆𝑖 𝑗 ), ℎ𝑑𝑖 𝑗−1) (1)

where 𝑒 (𝑆𝑖 𝑗 ) is the embedding of 𝑆𝑖 𝑗 . 𝑖 represents the i-th utterance
in the conversation, while 𝑗 represents the j-th word in the current
utterance.

We then use the attention mechanism [2] to estimate the impor-
tance of words in the sentence expressed as word-level attention
distribution 𝑎𝑠 :

ℎ𝑑𝑖 =
𝑙∑
𝑗=1

𝑎𝑠𝑗ℎ
𝑑
𝑖 𝑗 (2)

𝑎𝑠𝑗 =
𝑒𝑥𝑝 (𝑡𝑎𝑛ℎ(𝑊 𝑑ℎ𝑑𝑖 𝑗 + 𝑏

𝑑 )Tℎ𝑑𝑖 𝑗 )∑𝑙
𝑗=1 𝑒𝑥𝑝 (𝑡𝑎𝑛ℎ(𝑊 𝑑ℎ𝑑𝑖 𝑗 + 𝑏𝑑 )Tℎ

𝑑
𝑖 𝑗 )

(3)

3.1.2 Conversation layer. Similarly, for the conversation layer, in
order to obtain the dependencies between sentences, we again use

Bi-LSTM to encode ℎ𝑑𝑖 :

ℎ𝑑𝑖 = Bi − LSTM(𝑒 (𝑆𝑖 ), ℎ𝑑𝑖−1) (4)
We also obtain the importance of different sentences in the con-

versation expressed as sentence-level attention distribution 𝑎𝑢 :

ℎ𝑑 =
𝑙∑
𝑗=1

𝑎𝑢𝑖 ℎ
𝑑
𝑖 (5)

𝑎𝑢𝑖 =
𝑒𝑥𝑝 (𝑡𝑎𝑛ℎ(𝑊𝑢ℎ𝑑𝑖 + 𝑏𝑢 )Tℎ𝑑𝑖 )∑𝑙
𝑖=1 𝑒𝑥𝑝 (𝑡𝑎𝑛ℎ(𝑊𝑢ℎ𝑑𝑖 + 𝑏𝑢 )Tℎ𝑑𝑖 )

(6)

𝑊 𝑑 , 𝑏𝑑 ,𝑊𝑢 and 𝑏𝑢 are learnable parameters and 𝑡𝑎𝑛ℎ is hyper-
bolic tangent function. Thereby, we finally obtain the target con-
versation representation ℎ𝑑 .

3.2 Equivalent Shared Memory
Asmentioned before, we aremotivated by the observation of Equiv-
alent Shared Memories (ESM) existing across different conversa-
tions. The proposed model is established based on the hypothesis
that ESM can be discovered from similar conversations and em-
ployed to generate the next utterance of the target conversation.

3.2.1 Similar Conversations Discovery. Similar conversations play
a key role in DRMN. First, we introduce how similar conversa-
tions are obtained. Our goal is to find similar conversations to the
target conversation. Due to a typically large number of samples in
real-world datasets, to assure high efficiency of retrieving similar
conversations we use ElasticSearch3 to retrieve the top 50 similar
conversations as candidates by leveraging the target conversation
as a query and the other samples as documents. To capture seman-
tic information, we fine-tune the pre-trained RoBERTa model [29].
Then, we add a dense layer with softmax as a classifier to obtain
the semantic similarity score between the target conversation and
each candidate.

Next, we describe how the similar conversations are represented.
We obtain the representation of a similar conversation by using the
same way as representing the target conversation, with the differ-
ence that the similar conversation fragment is encoded only with
the utterance layer. This is because, to construct the ESM, the con-
text of the target conversation interacts with each sentence in the
similar conversations. Then the similar conversation 𝐷𝑔 is repre-
sented in the way as illustrated in Eqs. 1, 2 and 3. We then ob-
tain the attention distribution 𝑎𝑔 , as well as the representation of
each sentence in the similar conversation, which is expressed as:
ℎ𝑔 = [ℎ𝑔1, ℎ

𝑔
2, ..., ℎ

𝑔
𝐿].

3.2.2 Equivalent Shared Memory Construction. Equivalent Shared
Memory (ESM) refers to the backbone patterns that commonly ap-
pear in similar conversations, which are closely related to the sen-
tences to be generated.

Note that the sentences in the target conversation and ones in
each selected similar conversation are not in one-to-one correspon-
dence; for example, the utterance to be generated in the target con-
versation could be similar to the third or fifth utterance in the simi-
lar conversation, or to any other subset of sentences. So we need to
read every utterance in the similar conversation to construct ESM.
3https://www.elastic.co/products/elasticsearch

https://www.elastic.co/products/elasticsearch


Take a hypothetical judicial scenario as an example. The con-
struction of ESM could be viewed as simulating the way in which
the experience of a judge gradually grows through learning from
similar cases. When a judge takes part in a trial case, he/she may
first mentally go over the memories (or even physically check the
related documents) to find similar conversations, and then to re-
call (or read) their entire trial process. In the end, he/she formu-
lates his/her own utterances for the target conversation based on
the common words/logic borrowed from the similar conversation
fragments.

To explore the connection between the target conversation and
the fragments of similar conversations, we propose to let the last
sentence appearing in the context of the target conversation inter-
act with each utterance in the similar conversations (see procedure
2 depicted in Figure 2). This is due to the observation that, in most
cases in the conversation generation task, the utterance to be gen-
erated is more related to the last utterance in the context [64]. The
representation of the last sentence in the target conversation con-
text is denoted as ℎ𝑑𝐿 (using Equation 2) while each sentence in the
similar conversation is represented as ℎ𝑔 = [ℎ𝑔1, ℎ

𝑔
2, ..., ℎ

𝑔
𝐿].

Unlike in the case of the traditional memory networks, to obtain
the dependency between ℎ𝑑𝐿 and ℎ

𝑔
𝑖 , the model reads ℎ𝑔𝑖 in order,

and at every step adopts the self-attention [51] module as memory
structure. The self-attention can be expressed as:

𝑆𝐴(Q,K,V) = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 ( Q · K𝑇

√
𝑑

) · V (7)

with three inputs: the query Q, the key K and the value V . This
module first takes the query to attend to the key via Scaled Dot-
Product Attention, then applies those attention results upon the
value.

Inspired by the concept of self-attention, we use the last sen-
tence ℎ𝑑𝐿 as a query Q, and each sentence in the similar conversa-
tion ℎ

𝑔
𝑖 as the key K and value V . The memory module is defined

as follows:

𝑆𝐴(ℎ𝑑𝐿, ℎ
𝑔
1, ℎ

𝑔
1) = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (

ℎ𝑑𝐿 · ℎ𝑔1
𝑇

√
𝑑

) · ℎ𝑔1 (8)

To prevent vanishing or exploding gradients, we adopt a layer nor-
malization operation [1] which refers to a feed-forward network
F with RELU activation function [13, 66]:

F (𝑥) =𝑚𝑎𝑥 (0;𝑥𝑊 𝑓 + 𝑏 𝑓 )𝑊 ℎ + 𝑏ℎ (9)
where𝑊 𝑓 , 𝑏 𝑓 ,𝑊 ℎ , and 𝑏ℎ are learnable parameters.

We represent the memory in a time step 𝑡 as 𝑌𝑡 , and the first
memory 𝑌1 can be represented as:

𝑌1 = F (𝑆𝐴(ℎ𝑑𝐿, ℎ
𝑔
1, ℎ

𝑔
1)) (10)

Our reading and memory update proceeds iteratively, and the
previous memory is used as the input of the next memory. The
memory content will continue to be enriched as the amount of
information increases. Thus, this process can be described as:

𝑌𝑡 = F (𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (
𝑌𝑡−1 · ℎ𝑔𝑡

𝑇

√
𝑑

) · ℎ𝑔𝑡 ) (11)

since the length of the conversation is 𝐿. Finally, we can obtain the
integrated memory which is denoted as 𝑌𝐿 .

3.3 Utterance Generation
To solve the long-dependency problem which often occurs in a
multi-turn conversations, we apply self-attention mechanism to
get the final representation of the target conversation, expressed
as 𝑋 . We merge the contextual distribution of the target conversa-
tion 𝑋 , and the ESM discovered from the similar conversation 𝑌𝐿
as the input for the decoder.

During the decoding process, we selectively copy ESM.This fur-
ther solves the Out-Of-Vocabulary (OOV) [44] problem. We learn
a probability pointer 𝑃 , which is used to determine whether to gen-
erate or copy at the current time step.

At the time step 𝑡 , the decoder state, attention distribution, and
context vector are represented as 𝑠𝑡 , 𝑎𝑡 , and 𝐶 , respectively. The
target vocabulary distribution is expressed as:

𝑉𝑠 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑊 𝑣 (𝑊 𝑤 [𝐶𝑡 , 𝑠𝑡 ] + 𝑏𝑤) + 𝑏𝑣) (12)
In addition, 𝑃 is computed as:

𝑃 = 𝜎 (𝑊 𝑝 (𝑋 + 𝑌𝐿) +𝑊 𝑐𝐶𝑡
𝑡 +𝑊 𝑠𝑠𝑡 + 𝑏𝑝 ) (13)

Therefore, we get the final vocabulary distribution 𝑉𝑓 :

𝑉𝑓 = 𝑃 ∗𝑉𝑠 + (1 − 𝑃) ∗
𝑙∗𝐿∑

𝑖:𝑤𝑖=𝑤

𝑎𝑡 (14)

𝑊 𝑤 , 𝑏𝑤 , 𝑊 𝑣 , 𝑏𝑣 ,𝑊 𝑝 and 𝑏𝑝 in the three equations above are
learnable parameters, 𝜎 is sigmoid function and the 𝑡𝑎𝑛ℎ is hyper-
bolic tangent function.

Finally, we use a cross-entropy loss as the objective function:
𝑙𝑜𝑠𝑠 = − log 𝑃 (𝑈 | 𝐷)

= −
𝑙∑
𝑗=1

log 𝑃 (𝑤𝑖 𝑗 | 𝑤𝑖1:𝑗−1, 𝐷)

4 EXPERIMENTAL SETTINGS
In this section, we introduce the datasets used for experiments,
baselines, evaluation metrics, and training details.

4.1 Datasets
We conduct our experiments on both the court debate dataset in
judicial field and the customer service dataset in e-commerce field
to prove the effectiveness of our proposed model. Both the datasets
are constructed from real-world conversations. We have chosen
the datasets belonging to quite different domains in order to prove
that our model has good domain adaptability.

4.1.1 Court Debate Dataset. The Court Debate Dataset (CDD) is
provided by the High People’s Court of one province in China. It
contains 260, 190 trial multi-role conversations. All the court tran-
scripts are manually recorded by a legal professional. In this work,
we aim at generating the words spoken by the judge. Therefore,
we consider the judge’s utterance as the output of the model, and
the previously-spoken context in the conversation is regarded as
input. The details of the dataset are shown in Table 1.

4.1.2 Jing Dong Dialogue Corpus. The Customer Service Dataset,
Jing Dong Dialogue Corpus (JDDC) [4], has been published as a
part of JD contest4. Analogously to the CDD dataset, the tested
4http://jddc.jd.com/auth_environment

http://jddc.jd.com/auth_environment


Table 1: Statistics of Court Debate Dataset

Conversation Utterance length(avg)
Train 208,152 2,869,794 7.2
Dev 26,018 364,345 7.0
Test 26,020 371,554 7.6
Total 260,190 3,605,693 ——

* The length represents the length of the utterance equal to the number of its
words.

Table 2: Statistics of Jing Dong Dialogue Corpus

Conversation Utterance length(avg)
Train 261,282 3,135,377 9.4
Dev 32,660 391,983 9.1
Test 32,661 391,480 9.8
Total 326,603 3,918,840 ——

* The length represents the length of the utterance equal to the number of its
words.

models will learn to generate the customer service employee’s ut-
terances based on the input represented by the prior part of the
conversation. The details of JDDC dataset are shown in Table 2.

To motivate other scholars to investigate this novel and chal-
lenging problem we release our code as well as the datasets.

4.2 Baselines
To test our model we select several representative and state-of-the-
art works in text generation as the baseline methods.
• CNN-based models:
– ByteNet [20]: a one-dimensional Convolutional Neural Net-

work.
– ConvS2S [10]: This approach uses the convolutional neural

network as an encoder to solve the problem of long sequence
training.

• RNN-based models:
– LSTM [18]: a unidirectional Long Short Term Memory net-

work.
– S2S+attention [36]: a model in which the encoder encodes

the input sequence, while the decoder produces the target se-
quence. The attention mechanism is added to force the model
to learn focus on specific parts of the input sequence when
decoding.

– PGN [44]: a commonly used method in the tasks of text gen-
eration and automatic summarization, which utilizes the copy
mechanism in the decoder to effectively solveOut-Of-Vocabulary
problem.

• Transformer-based models:
– Transformer [51]: a neural network using positional encod-

ing and multi-head self-attention mechanism.
– DAM [66]: a multi-turn conversation model which matches a

response with its multi-turn context using dependency infor-
mation based entirely on attention.

– ReCoSa [62]: a multi-turn conversation model in which the
self-attention mechanism is utilized to update both the con-
text and masked response representation.

– Retrieval-guided model [3]: a model in which the skeleton
extraction is made by an interpretable matching model, and

the following skeleton-guided response generation is accom-
plished by a separately trained generator.

• Hierarchical LSTM-based models:
– HRED [45]: a hierarchical RNN structure which enables to

simultaneously model the sentence-layer information and the
conversation-layer information in multi-turn conversation.

– EED [38]: a model which retrieves responses to create exem-
plar vectors and uses the vector to decode response.

– CCN [19]: a model which uses the combination of copying the
current context and the content from similar conversation.

It should be noted that the Retrieval-guided approach is a fusion
of extractive and generative basedmodels. In addition, themethods
EED and CCN also utilize similar dialogues for modeling during
training as in case of our model. It needs to be also pointed out that
CCN and EED use multiple similar conversations during the train-
ing, and we chose the best result as the baseline; they are marked
as CCN𝑏𝑒𝑠𝑡 and EED𝑏𝑒𝑠𝑡 , respectively.

Furthermore, all the baselines were trained in the same way as
the proposed model DRMN was trained to make fair comparison
across the models.

4.3 Evaluation Measures
We adopt two evaluation methods to evaluate the performance of
all the tested models.

4.3.1 Automatic Evaluation. Automatic evaluation adopts quanti-
tative evaluation metrics commonly used in text generation tasks:
BLEU [39] and ROUGE [26]. We regard BLEU and ROUGE scores
as objective evaluation, serving as the measures of method perfor-
mance [47]. We report ROUGE-1, ROUGE-L and BLEU to under-
stand the performance of each model and their advantages as well
as disadvantages.

4.3.2 Human Evaluation. In order to ensure the fluency and ratio-
nality of the generated utterances, we also qualitatively analyzed
data through human evaluation. We hired five well-educated NLP
researchers to evaluate the quality of the generated utterances. We
evaluated the effect of independent evaluation from two aspects:
Relevance and Fluency [21, 67]:
• Relevance: the generated utterance is logically relevant to the

conversation context and can provide meaningful information.
• Fluency: Generated utterance is fluent and grammatical.
We randomly selected 300 examples from the test set for eachmodel.
For either aspect, we set three levels with scores: +2, +1, 0, in which
higher score stands for excellent. To compute the final scores from
5 annotators, we remove the highest score and the lowest score
given by the annotators and then calculated the average of the re-
maining three scores. We report the average score and coefficient
𝜅 which indicates the consistency of evaluation among annotators.

4.4 Training Details
For representing utterances, we set the dimensions of word em-
bedding as 300 and use word2vec to build the initial word vectors.
For the role information, the dimension of the role embedding is
set to 100 with random initialization. In the encoder, the DRMN
is implemented by two-layer LSTM networks with a hidden size
of 300. In this case, a combination of forward and backward LSTM



Table 3:Quantitative Evaluation. We report ROUGE-1 (R-1),
ROUGE-L (R-L), and BLEU scores for each tested method.

model CDD JDDC
R-1 R-L BLEU R-1 R-L BLEU

ByteNet [10] 33.68 32.99 16.91 22.19 18.35 11.55
ConvS2S [20] 35.92 31.48 16.34 26.53 21.08 11.64
LSTM [18] 30.28 28.02 9.77 19.45 18.74 9.52

S2S+attention [36] 36.91 33.12 18.52 28.44 22.34 13.42
PGN [44] 37.03 34.25 18.75 29.78 24.06 14.37

Transformer [51] 37.59 34.93 18.58 27.25 22.75 11.29
DAM [66] 38.28 35.27 20.83 28.86 23.79 13.95

ReCoSa [62] 38.53 35.38 20.95 30.83 24.67 14.94
Retrieval-guided [3] 37.27 34.75 19.26 28.75 22.28 12.89

HRED [45] 38.22 35.74 20.71 28.01 23.28 13.86
EED𝑏𝑒𝑠𝑡 [38] 39.28 37.55 22.43 32.18 30.07 18.11
CCN𝑏𝑒𝑠𝑡 [19] 41.10 39.82 24.75 34.17 32.37 19.53
DRMN𝑡𝑜𝑝−1 43.79 39.23 23.11 35.98 32.71 22.08
DRMN𝑡𝑜𝑝−2 44.68 40.51 27.27 36.31 33.19 23.37
DRMN𝑡𝑜𝑝−3 45.03 43.09 28.96 36.15 33.35 23.42

Table 4:Qualitative Evaluation.We report the average scores
(Avg) and calculate the 𝜅 values for relevance and fluency.

model
CDD JDDC

Relevance Fluency Relevance Fluency
Avg 𝜅 Avg 𝜅 Avg 𝜅 Avg 𝜅

ByteNet [10] 0.63 0.62 1.01 0.71 0.59 0.55 1.19 0.67
ConvS2S [20] 0.64 0.51 1.05 0.82 0.67 0.71 1.13 0.56
LSTM [18] 0.54 0.48 0.93 0.61 0.53 0.52 1.09 0.59

S2S+attention [36] 0.89 0.55 1.32 0.69 0.88 0.48 1.26 0.57
PGN [44] 1.06 0.64 1.47 0.72 0.96 0.69 1.52 0.53

Transformer [51] 1.02 0.71 1.41 0.65 0.83 0.56 1.42 0.73
DAM [66] 1.04 0.77 1.47 0.57 0.88 0.58 1.51 0.68

ReCoSa [62] 1.06 0.67 1.55 0.65 0.91 0.71 1.59 0.55
Retrieval-guided [3] 0.96 0.72 1.43 0.59 0.92 0.64 1.48 0.63

HRED [45] 1.01 0.49 1.43 0.62 0.73 0.71 1.47 0.54
EED𝑏𝑒𝑠𝑡 [38] 1.11 0.63 1.62 0.73 1.07 0.65 1.65 0.54
CCN𝑏𝑒𝑠𝑡 [19] 1.12 0.66 1.69 0.68 1.01 0.72 1.77 0.70
DRMN𝑡𝑜𝑝−1 1.13 0.75 1.68 0.74 1.01 0.64 1.69 0.79
DRMN𝑡𝑜𝑝−2 1.12 0.64 1.71 0.69 1.05 0.68 1.73 0.65
DRMN𝑡𝑜𝑝−3 1.15 0.62 1.74 0.62 1.09 0.67 1.72 0.63

gives us 600 dimensions. The dropout is set to 0.8. Based on these
settings, we optimize the objective function with the learning rate
of 5𝑒−4. We perform the mini-batch gradient descent with a batch
size of 32. During the experiment, we adopted cross-validation to
ensure the rationality of the model.

5 EXPERIMENTAL RESULTS
5.1 Overall Performance
In this section we conduct the analysis of results from diverse per-
spectives to thoroughly evaluate the performance of the proposed
model. One thing to note before delving into details is that to prove
the impact of ESM module in ourDRMNmodel, we applied differ-
ent numbers of similar conversations, i.e., utilizing themost similar
conversation (top-1), the top two similar ones (top-2), and the top
three similar ones (top-3).

Quantitative Comparison against baselines. The quantita-
tive performance of all the tested methods is reported in Table

3. As Table 3 shows, the proposed approach DRMN𝑡𝑜𝑝−3 signif-
icantly outperforms all the baselines in ROUGE and BLEU metrics
over the two datasets.

Compared with the first three groups of baselines (CNN-based,
RNN-based and Transformer-based), DRMN with its variants per-
form significantly better than these models by a large margin. The
group ofHierarchical LSTM-basedmodels shows better performance
than the the first three groups. It demonstrates the effectiveness
of the hierarchical infrastructure for modeling conversations by
capturing word-level and sentence-level dependencies, which can
further improve the quality of the generated text.

Moreover, we notice the higher performance of the two base-
line methods EED𝑏𝑒𝑠𝑡 and CCN𝑏𝑒𝑠𝑡 compared to the other base-
lines. It indicates the advantage of leveraging similar conversations
in the task of text generation. Compared with the infrastructures
of these two best baselines, DRMN can gradually memorize key-
words, phrases, and sentences from similar dialogues to assist the
generation of the target conversation. CCN highly relies on the
copy mechanism on the decoder side, which tends to cause the
problem of copy position error during the generation process, as
well as its limitation in copying the keywords from remote sen-
tences. On the other hand, EED uses only similar dialogues as
a knowledge-assisted generation, and cannot extract key words,
phrases, and sentences from similar dialogues.

Qualitative Comparison against baselines.The quantitative
performance of all the tested methods is reported in Table 4. To be
fair, for each input, we shuffled the output generated by all the
models and then let the annotators evaluate them. As noted ear-
lier, 𝜅 indicates the consistency of the annotator’s evaluation. The
observed𝜅 coefficient values that range between 0.48 and 0.82 indi-
cate middle and upper agreement.We found that the relevance and
fluency compared to the best performing baseline model (CCN) in-
creased by 2.7% and 2.9% in the CDD, respectively. For the JDDC
dataset, although the fluency of our qualitative evaluation is lower
than that of CCN dataset, the relevance was still improved by 7.9%.

The impact of the number of similar conversations used.
We observe the increasing performance as the number of referred
similar conversations increases (see the results of DRMN𝑡𝑜𝑝−1,
DRMN𝑡𝑜𝑝−2, DRMN𝑡𝑜𝑝−3 in Table 3). As mentioned above, the
prediction of themodel appears to improve alongwith the increase
in the number of similar conversations, indicating that similar con-
versations play an important role in reading and memory. How-
ever, the increase of the number of similar conversations also adds
a certain degree of complexity to train the model. It makes the
time cost of model training higher as well as results in larger space
cost. In order to balance the effectiveness and the training cost, we
choose at most three similar conversations (top-3) for experiments
to verify the validity of our model.

Comparison based on datasets. In addition, we compare the
results obtained for the two datasets. We observe that the results
on the CDD dataset are better than the ones on JDDC both in the
quantitative and qualitative evaluations. After manually investi-
gating the contents of our datasets, we concluded the following
three possible reasons. First, compared with the court debate sce-
nario, customer service conversations are much more open due to
a large number of types and aspects of the commodities. It makes
the task of text generation more difficult. Second, the utterances



Table 5: Ablation study: quantitative evaluation.

model CDD JDDC
R-1 R-L BLEU R-1 R-L BLEU

TC+SC 38.71 37.09 21.86 31.75 24.92 15.65
-ESM 37.53 35.29 19.02 29.06 23.72 13.74

DRMN𝑡𝑜𝑝−1 43.79 39.23 23.11 35.98 32.71 22.08
DRMN𝑡𝑜𝑝−2 44.68 40.51 27.27 36.31 33.19 23.37
DRMN𝑡𝑜𝑝−3 45.03 43.09 28.96 36.15 33.35 23.42

Table 6: Ablation study: qualitative evaluation.

model
CDD JDDC

Relevance Fluency Relevance Fluency
Avg 𝜅 Avg 𝜅 Avg 𝜅 Avg 𝜅

TC+SC 1.09 0.81 1.63 0.48 0.96 0.61 1.66 0.62
-ESM 1.03 0.58 1.51 0.71 0.79 0.53 1.49 0.66

DRMN𝑡𝑜𝑝−1 1.13 0.75 1.68 0.74 1.01 0.64 1.69 0.79
DRMN𝑡𝑜𝑝−2 1.12 0.64 1.71 0.69 1.05 0.68 1.73 0.65
DRMN𝑡𝑜𝑝−3 1.15 0.62 1.74 0.62 1.09 0.67 1.72 0.63

of customers and customer service staff tend to be more colloquial,
while the judge’s utterances are more strict and formal. We note
that colloquial sentences may cause difficulties for language model
training due to a large variety of non-standard expressions. Last,
in the JDDC dataset, there is higher number of the same or similar
utterances. For example, the phrases like ”Welcome back again!”,
”Can I help you?” appear quite repetitively.

5.2 Ablation test
To assess the contribution of ESM module and similar conversa-
tions, we next conduct the ablation tests. To prove the effectiveness
of ESM module, we remove it from the DRMN model (removing
the entire second part in Figure 2), denoted as -ESM. To justify our
way of integrating the similar conversations with the target one,
we simply concatenate them together as input (denoted asTC+SC),
rather than modeling them in an interactive way as we have done
for DRMN. Tables 5 and Table 6 report the evaluation scores in
terms of the quantitative and qualitative analysis, respectively.

According to the results shown in Tables 5 and Table 6, we no-
tice a dramatic decrease in the performance of -ESM (decrease of
34.3% on CDD and 41.3% on JDDC, as measured by BLEU score).
Similarly, the variantTC+SC has also experienced a large decrease
in performance but less than that in -ESM. It shows that similar
dialogues still play a certain role, but compared with the way of
interactive modeling in DRMN, a straightforward concatenation
TC+SC has limited effect. This confirms the effectiveness of the
proposed circular reading and memory module.

5.3 Case study
To help with better understanding of our model’s performance, we
demonstrate two cases in Figure 3. The figure shows the results ob-
tained by different models such that the left side represents the
target conversation, and the right side represents its similar con-
versation in the dataset. We show the ground truth utterance (in
purple color) as well as the utterances generated by different mod-
els. We also highlight the utterance delivered by our model and
the relevant context in the similar case (in red color). We can first
observe that ESM can be extracted either from a single sentence

(such as the CDD example in Figure 3, for which the ESM comes
from the third last sentence of a similar conversation), or it can
originate from multiple sentences (such as the JDDC example in
Figure 3, in which the ESM comes from the last two sentences of
the similar conversation).

As shown in the Figure 3, compared with the best performing
baselines, especially CCN and EED, our model can better capture
important entities, phrases, as well as the sentences from similar
conversations. For example, ”tax number” and ”need to provide
the invoice header” are recalled from similar conversations. Since
the memory module in DRMN uses a self-attention mechanism,
parallel calculations can be performed for long sentences. Hence
the long-term memory can be achieved.

We next verify whether the performance improvements are ob-
tained thanks to the detected relevant similar conversations. We
analyze the attention weights (𝑌𝐿 in Figure 2) of the similar con-
versations for the first example of our case study. As shown in
Figure 4, the darker the color, the higher the weight of the word is,
and the greater is the impact on the context (it means these words
have higher importance). We can observe that DRMN selects key-
words by assigning them high weights; these words are accurately
memorized.

5.4 Error analysis
To explore the limitations of our model, we also analyze the gener-
ated utterances, summarize the problems that occur, and explore
the optimization solutions.

After conducting statistical analysis, we found that DRMN per-
forms worse for low-frequency utterances/keywords or ones that
do not appear in the target conversation or similar conversation. In
particular, there are 43% errors5 belonging to this case in the JDDC
dataset. For example, in the sentence ”Your order was successfully
intercepted”, the word ”intercepted” is a low-frequency word, and
it has not appeared in the target conversation neither in the sim-
ilar conversation. Similarly, in the CDD dataset, such a problem
caused 45% of errors, e.g., in sentences like: ”Why was the appli-
cation for investigation and evidence collection not submitted until
today?”, ”application” and ”collection” are in low-frequency in le-
gal trial scenario. In addition, 42% of errors in the JDDC dataset
occur when specific attributes of products are mentioned which
tend to appear sparsely in the dataset, e.g., ”The hard disk capacity
of this computer is 500G, and the memory is 16G”. Finally, it is worth
mentioning that the proposed model has worse performance when
generating long sentences.

Table 7 shows the statistics of the cases with fluency score equal
to 0 for two best performing baselines and our proposedmodel.We
can observe that all the tested models face significant difficulties in
generating long sentences. Among all the utteranceswith a fluency
score equal to 0, the proportion of long utterances6 for DRMN
takes up to 78.6% (85% for CCN and 92% for EED ). It proves the
superiority of DRMN even in very hard cases.

5The error refers here to the generated text for which either the relevance or the
fluency score equals 0.
6I.e. the utterances with length greater than 10.



Target Case (JDDC) Similar Case (Top1)

…… ……

Servicer: You need to provide the invoice header and tax number. Customer: Can you issue an invoice?

Customer: Can you issue an invoice? Servicer: Yes, Sir.

Servicer: Yes, sir. Customer: Can I only provide my tax number.

Customer: What information do I need to provide? Servicer: Sir, You also need to provide the invoice header.

Ground Truth: Sir, you can just write the invoice header and tax number.
Ours-DRMN You need to provide the invoice header and tax number. Retrieval-guide Is there anything else that can help you?
CCN Yes, the invoice header is required. Transformer We look forward to your visit.
EED Please give me the invoice information. S2S+Attention Can I help you?
ReCoSa Is this an electronic invoice? PGN Can I help you?
DAM What information needs to be provided? Cons2s Sir, can I help you?
HRED Our products have a floating policy. ByteNet See you.

Target Case (CDD) Similar Case (Top1)

…… ……

Judge: Did you have any economic contacts before? Plaintiff: The defendant’s loan principal is still #number .

Plaintiff: No. Judge: Has the defendant repaid you interest?

Judge: How much did the defendant loan? Plaintiff: He paid two times last year.

Plaintiff: The defendant’s loan about number. Judge: What about the subsequent interest?

Ground Truth: Whether the defendant has repaid principal and interest?
Ours-DRMN Has the defendant repaid you interest? Retrieval-guide Defendant <personname> remittance location?
CCN How much the defendant’s loan? Transformer What is the defendant's occupation?
EED Whether the plaintiff provided evidence? S2S+Attention Does the plaintiff have anything to add?
ReCoSa Whether the defendant has questions to ask the plaintiff? PGN Does the plaintiff have anything to add?
DAM Plaintiff questioned the evidence? Cons2s Final statement.
HRED Plaintiff continues to provide evidence. ByteNet Does the plaintiff have anything to add?

Figure 3: Case Study. We take two examples (target cases shown on the left side) from the judicial data and customer service
data. We then show the following ground truth utterance as well as the utterances generated by different models. In addition,
similar cases are displayed on the right. DRMN can memorize similar conversation information and accurately locate related
entity, phrases, as well as sentences in similar conversations through the current conversation logic (the red text represents
generated utterances that also appeared in similar conversations, and which our model can accurately remember.).

tax number

need to provide the invoice header

Can you issue an invoice ？

Yes，Sir.

Can I only provide my tax number.

Sir, You also need to provide the invoice header.……

……

Figure 4: Visual analysis graph: the diagram on the right
shows the significance of the DRMN model for memoriz-
ing words in similar conversations based on the sub-part of
the example shown in Figure 3; the depth of the color repre-
sents the importance of words and the darker the color, the
greater the weight of the word.

Table 7: Error analysis for the tested models on the cases
with fluency score equal to 0.

Model DRMN CCN EED
#long utterance/ratio 11/78.6% 17/85% 23/92%
#short utterance/ratio 3/21.4% 3/15% 2/8%

The improvement of the pre-training language models and con-
structing retrieval database could be promising approaches for fu-
ture research to address the above-mentioned problems.

6 CONCLUSION AND FUTUREWORK
Themotivation behind our work is to improve the efficiency of con-
versation generation in specific domains. In particular, we propose
a novel neural network structure called Deep Reading Memory
Networks (DRMN), which enhances the expression of the model
by reading and memorizing similar dialogues, as well as improv-
ing the quality of the generated text. Unlike the prior research, the
proposed approach does not need to leverage any external knowl-
edge, thus maintaining high field adaptability. We conduct experi-
ments on two different datasets with both quantitative and human
evaluation to validate the effectiveness of our proposed model. Ex-
perimental results indicate DRMN’s superiority when compared
with a number of existing state-of-the-art text generation models,
which suggests that the Deep Reading Memory Networks can suc-
cessfully improve the conversation generation performance.

In the future, we will further investigate other content gener-
ation problems by leveraging multi-granularity memorizing and
copying mechanism. The current study serves as the methodolog-
ical foundation for this goal.
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