
Journey to the Past: Proposal of a Framework for Past
Web Browser

Adam Jatowt1, Yukiko Kawai2, Satoshi Nakamura1, Yutaka Kidawara3 and Katsumi Tanaka1

1Kyoto University
Yoshida-Honmachi, Sakyo-ku,

606-8501 Kyoto, Japan
Phone: +81-75-7535969

{adam, nakamura,
tanaka}@dl.kuis.kyoto-u.ac.jp

2Kyoto Sangyo University
Motoyama, Kamigamo, Kita-Ku,

603-8555 Kyoto, Japan
Phone: +81-75-7052958

kawai@cc.kyoto-su.ac.jp

3National Institute of Information and
Communications Technology

3-5 Hikaridai, Seikacho, Sorakugun,
619-0289 Kyoto, Japan
Phone: +81-77-4986828

kidawara@nict.go.jp

ABSTRACT
While the Internet community recognized early on the need to
store and preserve past content of the Web for future use, the tools
developed so far for retrieving information from Web archives are
still difficult to use and far less efficient than those developed for
the “live Web.” We expect that future information retrieval
systems will utilize both the “live” and “past Web” and have thus
developed a general framework for a past Web browser. A
browser built using this framework would be a client-side system
that downloads, in real time, past page versions from Web
archives for their customized presentation. It would use passive
browsing, change detection and change animation to provide a
smooth and satisfactory browsing experience. We propose a meta-
archive approach for increasing the coverage of past Web pages
and for providing a unified interface to the past Web. Finally, we
introduce query-based and localized approaches for filtered
browsing that enhance and speed up browsing and information
retrieval from Web archives.

Categories and Subject Descriptors
H.5.4 [Information Interfaces and Presentation]:
Hypertext/Hypermedia – navigation

General Terms
Algorithms

Keywords
past Web browser, Web archive, past Web

1. INTRODUCTION
The World Wide Web changes continuously, generally in an
unpredictable and unorganized manner, and it is necessary to
store the past contents of Web pages for future reuse. The Internet
Archive [19] is the best-known, general Web archive; moreover,
currently it is probably the largest digital library in the world. It
offers about one petabyte of data and is growing at a rate of 20

terabytes per month [19]. Other dedicated Web archives also exist
such as archives containing Web pages from individual countries
[1,2,17,24], for example: Australian archive [24], Swedish archive
[2] or thematic Web archives related to certain events or topics,
such as: September 11 Web archive [25] or Election 2002 Web
archive [14]. Besides these, there are other repositories of past
Web pages that can be considered to some extent as Web
archives, such as: local caches, site archives, personal Web
document repositories, transaction-time servers [12,13] or search
engine caches. Lastly, there are organizations like International
Internet Preservation Consortium [18] that were established with a
mission of collecting, preserving and making accessible data from
the Web for future generations.
Web archives show the history and evolution of the Web as well
as reflect the past states of societies. They contain evidences of
how our society has evolved and how it reacted to events in the
past. Historical snapshots of Web pages can potentially show the
history of the underlying elements represented by those pages—
institutions, companies, people, and other such entities. The usage
of Web archives can greatly benefit researchers and practitioners
in many areas ranging from history to sociology and marketing.
Recently some concerns arouse, however, with copyright issues
of data stored in Web archives. To cope with this problem, Web
archives introduce policies to allow content publishers to choose
whether they consent to having their content archived.
Throughout this paper, as the live Web we consider the present
Web containing Web pages as we see them currently. These pages
have potential of being updated, hence, we call them live. Past
Web, on the other hand, is considered as the part of WWW space
where pages have no longer any change potential and are merely
snapshots of past states of live pages. Hence, past pages are the
frozen snapshots of pages that once belonged to the live Web.
Since much of the information that has disappeared from the live
Web is still available in Web archives, it is reasonable to assume
that future information retrieval systems will be able to retrieve
data from the live and past Web at the same time. This will
increase the total amount of information available. Users might
search for some information from the past, which has already
disappeared from the present Web and cannot be retrieved by
conventional IR systems. While old page versions may not be
fresh, nevertheless their contents may offer some value. They also
have the advantage of guaranteed persistence in an unchanged
form. Moreover, browsing past content of current, live pages can
help to characterize them better than merely seeing their present
momentary versions. For example, Web authors may gain more

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
HT'06, August 22-25, 2006, Odense, Denmark.
Copyright 2006 ACM 1-59593-417-0/06/0008...$5.00.

135

knowledge about a certain live page and utilize that knowledge
when deciding whether or not to link to it. Thus, they will be
more convinced about the general scope of topics of the page and
the probability of its future topics. Additionally, many users may
find it interesting to browse histories of their favorite Web pages
to see how they looked like before.
Considering the advantages and the potential of Web archives, the
realization of a browsing interface that enables users to find and
to view past page versions in an easy and efficient way would be
of great benefit. While there are various visualization interfaces
for digital libraries, an interface similar to those for the live Web
seems the most convenient for Web archives. The interface should
support fast and easy information retrieval and browsing. Ideally,
it should offer access to the past Web that is similar to and as
efficient as that offered by current interfaces to the live Web.
However, current interfaces to Web archives are still in the
development phase and do not necessarily provide such access.
Browsing the past Web is currently not efficient due to three
problems in particular.

• Difficulty of navigation in space and time in Web archives.

• Lack of efficient change management, which would help to
perceive the evolution of pages in time and help to find
required information in massive amounts of past Web data.

• Limited coverage of Web archives, hence, lack of historical
data of many Web pages or its incompleteness.

We have developed a general framework of a browser that should
facilitate and enhance the browsing of Web archives. A browser
based on our framework would support passive browsing with
minimal user interaction. The user would input URL and a time
point from when he or she wants to start browsing. The system
would then sequentially retrieve past page versions from archives,
starting from the specified time point, and present them to the
user one by one. This presentation of page versions would be
based on detection of changes and conversion to an animation.
The user could then view the parts that had been changed along
with the time flow. This approach makes it easy for the user to
observe and to understand the evolution of pages in time and to
detect the updated content.
We can distinguish two basic types of browsing: vertical and
horizontal. The former means navigating between past versions of
different pages at or around a certain point in time, while the
latter means viewing page versions of the same page along the
time direction, i.e., browsing the past Web in a horizontal
direction. A mixture of both kinds of browsing would enable
users to traverse both in time and space of the past Web. While
we are particularly interested in the horizontal type of browsing,
our framework incorporates a mixture of both types.
A major problem encountered when browsing Web archives is an
incomplete state of past Web snapshots. Due to resource
limitations, Web archives cannot crawl and preserve the whole
Web with suitable granularity to capture all changes in Web
documents. We propose a meta-archive browsing approach for
providing a unified access to the past Web to overcome this
problem. This approach assumes searching for and collecting past
page versions from different past Web repositories in the same
time.

Our proposed framework incorporates also methods for improved
browsing when a user is searching for certain information. We
provide query-driven and localized filtering capabilities, which
are especially useful for information seeking users when the exact
date or query is not known or is unclear. This information need
can be reflected by a request, for example, such as “I would like
to find information about X that appeared some time ago on page
A.” If the exact time point is known, the problem is trivial.
However, people often do not remember when they saw some
particular bit of information. Another type of query that can be
effectively handled by filtered browsing is one about the date of a
deletion of content, such as “I would like to know when
information about X was removed from page A.” For example, a
user may want to know when a particular member of some
laboratory left, so that his or her name was removed from the list
of laboratory personnel1.
The remainder of this paper is organized as follows. After first
discussing related research in Section 2, we describe in Section 3
our proposed framework for browsing the past Web. In Section 4,
we describe its search-oriented features. In Section 5, we discuss
the implementation of the browser while in Section 6 we
demonstrate the validity of our framework based on experimental
results. In Section 7, we discuss how the assumptions and
simplifications we made limit our framework. We also describe
the contributions our framework makes and its potential
applications. In the last section, we summarize the key points.

2. RELATED RESEARCH
The dynamics of the Web has been measured in a series of
experiments in which vast quantities of Web pages were analyzed
and compared over a certain period of time [4,6,15]. The results
showed that the Web is a very dynamic environment in which
changes continuously occur in both the content and the link
topology. While, it has been revealed that many new pages are
continually being added and many old pages are being deleted,
there are still a large number of stable Web pages that have long
histories, which could be browsed. The main or top pages of Web
sites often fall into this category. Our primary focus is such pages.
Until now the Web archiving community has mostly concentrated
on storing and preserving Web pages; relatively little attention has
been paid to providing interfaces to the past Web data. The
Wayback Machine [19] is a popular Web-based interface to the
Internet Archive. It is more a general retrieval system than a
traditional browsing application. After a user inputs a URL and
optionally dates defining a requested time period, the available
page versions of the URL are displayed in sequential order in the
directory page. The user can click on any page to view its
contents. He or she can follow links from that page if the linked
pages are also stored in the archive. The Wayback Machine also
indicates which page versions contain changes by marking them
with an asterisk; however, it does not display changes unless the
user explicitly requests change visualization. Generally, the
Wayback Machine does not promote easy serendipitous discovery
in the Internet Archive. Horizontal browsing along the time line is
troublesome and takes time since the user needs each time to

1Although there would normally be a delay between the person’s

departure and its reflection on the page, if we assume that it is
minimal, the date of removal should reasonably approximate the
date of departure.

136

come back to the directory page and to click on a new page
version. This becomes even more difficult when he or she wants
to freely browse the spatio-temporal structure of the past Web.
Recently, a public open source implementation of Wayback
Machine has been also released [30]. Besides having most of the
functionalities of the standard Web-based version, it provides
Timline Replay mode in which a timeline listing page versions is
visible at the top of each page. Browsing forward and backward
in time is done by clicking on the timeline. However, again, this
style of browsing requires users to click on page versions, which
might be troublesome when there are many past page snapshots.
WERA (Web Archive Access) [31] is another archive viewing
application. It was built from the Nordic Web Archive (NWA)
Toolset [17,22], an interface to the Nordic Web Archive [17]—a
joint project of the national libraries of the five Nordic countries.
WERA is similar to the Timline Replay mode in the open source
implementation of the Wayback Machine. It supports time and
URL input for specifying a particular page version. The user
interface also has a simple timeline showing the number of
available page versions and the currently browsed page version.
Similarly to the Wayback Machine there is no change
visualization integrated, so identifying added and deleted content
can be time consuming and error-prone, especially for Web
documents with much content.
Both the Wayback Machine and WERA are designed for
particular Web archives. This implies that only the resources
stored in a single repository or in a small, limited set of archive
collections can be accessed during browsing. However, individual
repositories are always incomplete considering the expected size
of the past Web. To overcome this limitation, our framework
allows for the usage of virtually unlimited number of Web
archiving repositories at the same time. Hence, we call it past
Web browser rather than Web archive browser. Next, it facilitates
browsing the past Web by combining passive, automatic page
viewing together with change detection and presentation. This is
very useful for efficiently browsing large amounts of past page
versions that additionally could have few updated contents. We
also provide tools to facilitate navigation in the link structure of
the past Web. Finally, our framework has functions that minimize
the user effort and time required to find specific information in
past versions of pages.
As we mentioned before browsing of past Web data is done in our
framework using the change detection and change presentation
system that facilitates user comprehension of page history and
helps to find requested content. Several automatic change
detection and presentation systems have been proposed for online
data [3,11,20]. However, these systems, including the one used in
the Wayback Machine, are not efficient when there is a change
overload and can fail to clearly show deleted and added parts of
the pages, especially if their locations overlap. Presenting both the
added and deleted parts on one page may result in too much data
being blended together in a manner not suited to the page
structure. Our framework avoids this problem by visualization of
the changed elements using animation effects.
Offline browsing [23] bears some similarity to past Web
browsing. Offline browsers download data from the Web so that it
can be browsed later on local machines. In this way users can
view previous snapshots of fast changing pages in detail at any
time. However, browsing along time is not supported, nor other
functionality proposed in our framework.

User navigation patterns and usability of navigation tools for the
live Web have been studied in [7,26]. Unfortunately, to the best of
our knowledge, there was no similar study conducted for
browsing past Web page versions stored in Web archives.
Chi et al. [5] and Toyoda and Kitsuregawa [27,28] demonstrated
systems for visualizing the evolution of Web ecologies or
communities by analyzing and visualizing the snapshots of Web
graphs. While these applications display the changes in the
structure and popularity of parts of the Web, our focus is on
visualizing changes in single Web documents and on providing a
general tool to a user for unrestricted browsing in the past Web.
Finally, there is large research work that to varying extent is
related to temporal aspects of the Web. For more information,
[16] contains an exhaustive selection of research papers that deal
with time in the context of Web pages.

3. PROPOSED FRAMEWORK
3.1 Meta-archive Approach
In the past Web history of each Web page, marked by a unique
URL, can be represented using its past versions. Page version is a
frozen snapshot of page contents at some point in time and can be
considered as a sample drawn from the page history, reflecting the
state of the page at a certain time point. The page version is thus
marked by the URL of the page and a timestamp indicating the
date of its capture. Note that under this definition, two page
versions retrieved from different time points can still have the
same content.
The representation of the history of a page is often incomplete.
Consider two consecutive versions of a page v1 and v2, drawn
randomly from a Web archive database. The time points when the
page versions were fetched and stored in the database are t1 and t2
(t1<t2). The probability P(vi) that there is a vi satisfying t1<ti<t2
and containing content different from that in v1 and v2 depends
mostly on the length of the period from t1 to t2, but also on such
factors as: the type of the page, the content difference between
page versions v2 and v1, the average changeability of the page, etc.
The probability P(vi) will be coming closer to zero as the length
of the period from t1 to t2 is decreasing, however, it could never
reach zero as the page cannot be crawled continuously unless
there is some other evidence of a lack of any unknown changes.
We conceptually define the coverage of a Web archive as the total
amount of different content tracked and stored in the archive
compared to the total amount of different content that ever existed
in the Web before. Additionally, Web archives can be evaluated
from the viewpoint of the trustfulness of the archived data they
contain that could be evidenced in practice by some kind of
certificates. For example, data obtained from a personal Web
archive would be considered less trustful than data collected from
a large Web page repository containing billions of page versions
and having professional maintenance and control.
Due to resource limitations, Web archives often have very low
coverage as they contain only few snapshots of tracked pages or
they do not track some pages at all. Our proposed framework
alleviates this problem by using a meta-archive browsing
approach to maximize the overall coverage at low cost. This
approach presumes communication with several complementary
Web archives at the same time (Figure 1). The list of past Web
repositories that can potentially contain searched data is stored
and maintained by the browser. After receiving a request for a

137

page history, the system queries the archives about their versions
of the page for the specified time frame. The optimum strategy
would be first to fetch and to compare the document signatures
(checksums) in order to detect those page versions that contain
changes among the cooperating repositories. Downloading only
such versions would result in maximum efficiency of fetching
data for the reconstruction of page history. Alternatively, the
system would require lists of those page versions from individual
archives that have changed content when compared to the
neighboring (consecutive) page versions stored in those archives.
Note that the Internet Archive already provides lists of Web page
versions indicating those that were changed. Then, only the
versions with a change would be fetched from the archives. For
other archives, which do not support such functionalities, all
stored snapshots of the page would have to be downloaded. Page
versions, represented by their URL addresses and timestamps
would be sent to the browser, which then would place them in
order and make ready for viewing. The browser could also
compare Web archives’ certificates to determine the levels of
trustfulness and choose the versions with the highest levels. Since
the entire interaction must be realized in real time, it is necessary
to ensure an uninterrupted and rapid stream of data. Besides this,
load-balancing measures could be taken to prevent too high
workload of single resources.
The realization of the meta-archive approach would bring us
closer to the experience of browsing the past Web rather than
browsing individual past Web repositories. We would have a
unified interface to the history of the Web and be less dependent
on individual Web archives. However, since Web archive
interfaces are still not standardized, the browser should currently
support different communication protocols and data acquisition
methods for different past Web repositories.

Figure 1 Meta-archive approach as an interface to the past
Web

3.2 Horizontal Navigation
Browsing begins from a starting point, represented by a URL and
a point in time. If there is no corresponding page version in the
archive, the browser chooses the one that is closest in time. Next,
upon pushing a play button, the browser automatically displays
consecutive page versions in a passive way. Passive viewing in
horizontal browsing results in minimum user interaction since
page versions are presented to the user one by one, like in the
slideshow. Similar to watching a video, the user can pause or stop
the motion, enabling detailed viewing of the current page version
or link following. In addition, at any time the user can manually
input a new date or a new URL, thereby jumping to another page
version or to another Web document.

The browser features a timeline that is automatically constructed
when the presentation flow of a certain page begins. It shows the
distribution of page versions and their changes. It thus displays
the points in time for which page versions are available and a
color indicator showing whether their content differs from that of
previous versions. The currently viewed page version is also
indicated in the timeline. The information provided by the
timeline enables the user to orient himself or herself in the time
dimension and to check whether further horizontal browsing
would be worthwhile. The timeline is also a navigation tool as the
user can click on any page version and jump in time. Zoom
function is also provided to see the timeline in higher detail.
The construction of the timeline is a costly process since the
browser has to fetch all page versions and to compare them for
changes. Therefore, it is gradually constructed during browsing,
starting from the page versions closest to the actual time point of
navigation. This was however facilitated in our experiments since
most of data was obtained from the Internet Archive, which
provides information about the distribution of changes in page
histories.
Additionally, a bookmarking facility is also provided. Unlike in
the live Web, bookmarks in the past Web usually guarantee the
preservation of a page version in an unchanged form. Users can
select a page version and bookmark it for later use as a starting
point for the next browsing experience.
Finally, we propose a recording function like in traditional video
recording systems. It gives the user the ability to record the
history of pages in a customized way and to share it with others.
The browsing history is recorded as past page version indicators
(URL, timestamp) and optionally user actions that were
performed during the browsing. Other users who use the same
browser could then replay the browsing again on their local
machines. This could be useful when users wish to share
information about interesting changes they noticed while
browsing.

3.3 Change Detection and Presentation
Our approach is based on the belief that browsing of the past Web
should be based on change management. Considering the current
size of the past Web, where there is a lot of static and redundant
data, we believe that the optimal method for browsing is the one
using the change visualization. It enables us to see the essence of
the history of Web documents and to view their evolution. We
thus assume that the changed data is the most important element
in Web archives and that focusing on it can help reduce the
amount of browsing in the massive data pools of Web archives.
Added as well as deleted types of content changes between
sequential page versions are displayed to show the overall content
variance in the page. This enables users to spot not only the added
content in consecutive page versions but also to observe the
removed content.
Our change presentation algorithm assumes the gradual display of
changes in the form of animation. Animation of changing content
is used here to present the evolution of pages. It especially suits
our passive viewing mode as it allows for a smooth transition
between sequential page versions. It also draws users’ attention to
the updated content. The sequence of change presentation
depends on the importance of changes in a page. We assume a
simple estimation of change importance based on analyzing a

Past Web Browser

...

Past Web

Web
Archive 1

Web
Archive 2

Web
Archive N

138

page from left to right and from top to down. A page is gradually
processed so that deletions are shown first followed by additions.
Content that is static between consecutive page versions remains
displayed on the page throughout the transition. However, its
location may change depending on the structure of the page in the
latter page version. User can control the speed of the animation
through a drag-and-drop meter. Negative velocity values are
supported to enable browsing backward in time. After the current
page transition is completed, the browser signals the completion
of animation by a short sound and waits a moment presenting the
complete page version. The length of this interval should be
optimally chosen to enable the user to roughly grasp the contents
of the currently displayed page version without significantly
delaying the overall browsing process. It could be manually set by
the user or alternatively could be made dependent on the type of
the page and the amount as well as the distribution of its changes.
Once the complete page version is presented, the browser
analyses the next page version and again animates the changes.
Thanks to this presentation method, we can demonstrate the
evolution of page content in a smooth and intuitive way while at
the same time allowing some time for the user to quickly skim
through the page content.
We propose using a simple form of animation, that is, the effects
of appearing and disappearing with varying blinking speed. For
example, first a deleted element starts blinking slowly and then
blinking speed increases until the element disappears. In addition,
the insertion and deletion changes are indicated by different
colors for their better perception and differentiation. Other
animation effects could be utilized based on the user’s
preferences, time requirements, etc.
As mentioned above, there is a manual time jumping capability
provided by enabling the user to input a new date or to click on
any point in timeline. However, because of the abundance of
static, redundant content in past Web pages, we also propose an
automatic jumping facility. This is automatically adapted to the
page contents and to the distribution of changes in time. During
the presentation flow, the browser jumps over the changeless
periods and displays the first page containing any content change
(Figure 2). Automatic jumping facility can be switched on or off
by the user. By equipping the browser with this function, the
browsing experience is improved thanks to limiting the displayed
page versions to the ones that contain changes.

Figure 2 Automatic jump (horizontal browsing is represented
by block arrows; changes in page versions are shown as small
rectangles)

3.4 Vertical Navigation
The user can stop the presentation by pressing either the pause or
stop button. The former halts the animation and displays a
partially rendered page. The latter interrupts the presentation, but
orders the browser to load the consecutive page version, without
completing the change presentation.

While the animation is interrupted, the user can read a page in
detail and optionally follow the links on the page. When a link is
clicked the browser queries archives to find the available version
of the target page that is closest in time to the actual time point of
browsing. Then, when the user presses the play button, the
browser starts presenting the new page. If the new page is not
stored in the archive, the browser signals an error by a short sound
or visual signal.
The back button is one of the most often-used navigation tools in
browsers for the live Web. It is based on the stack mechanism for
the browsing history. Two back buttons are prescribed in the
framework for enhancing vertical navigation: a page-version-
consistent button and a time-consistent button. The paths
traversed by using each of the back buttons are compared in
Figure 3. The first button returns the display to the page version
from which the link was clicked, in much the same way as with
browsers for the live Web. However, in the past Web it often
means also jumping backwards or forwards in time depending on
the direction of browsing. The second button returns the display
to the version of the previously viewed page that is closest in time
to the version from where the user started clicking the back
button. This type of back navigation thus moves in a vertical way
and minimizes time variance between visited pages.
Additionally, we also provide two forward buttons working in the
similar style as the back button.

Figure 3 Vertical navigation by using two back buttons
(dashed lines represent page-version-consistent back
navigation and dotted lines represent time-consistent back
navigation; block arrows show horizontal navigation and solid
lines represent vertical navigation)

4. SEARCH-ORIENTED BROWSING
In this section we propose filtered browsing by using query-based
and localized filtering. These enhancements are designed for
information-seeking users to minimize the time spent searching
for information by automatically filtering and limiting the
information displayed.

4.1 Query-based Browsing
By choosing query words the user indicates the kind of changes in
which he or she is interested. The system can then outline those
textual changes that are highly similar to the query. The simplest
and most cost-effective implementation is animating particular
changes only if they contain any of the words found in the query.
The changes, which do not contain query words, would be treated
as static text and displayed immediately without any animation.
Additionally, the automatic jumping mechanism could be used to

time

jump

Page A

Page B

Page C

time

139

view pages with only query-related changes. This kind of filtered
browsing should enable users to find changed content of interest
and guide them through the past Web.

4.2 Localized Browsing
Many pages feature “topical blocks” that display content topically
related. The main pages of news sites are a good example of such
a structure. The news stories are often divided into well-
understood, intuitive categories, such as, for example sport,
business or politics. Localized browsing concept is based on this
observation and provides a mechanism for selecting the area of
the page for horizontal browsing. For example, one can choose
the sports section on a news page. The browser then displays a
new window containing only the desired section and starts the
horizontal browsing. In this way, only changes appearing in the
selected area of the page are shown. Automatic jumping
mechanism together with other browsing facilities can be used in
the new window. The browser is thus equipped with a spatial
filtering mechanism. The user could also combine localized
browsing with query-driven browsing for even more precise
content filtering.
The localized browsing mechanism uses information about the
layout of the selected content in order to find the minimal HTML
block that encompasses the selected area. If the user selects an
area spanning more than one HTML block, the system considers
the minimal part of the page structure that embraces the entire
user-selected area. With this sort of browsing, the user predicts
the type of content appearing in the specified page area based on
the assumption that the layout of the browsed page does not
change. Localized browsing will fail if there is a considerable
change in the page structure, and the user should be made aware
of this potential danger. One way to overcome this problem could
be the analysis of content similarities for tracking the topical
blocks.

5. SYSTEM IMPLEMENTATION
The browser was built in C# using Microsoft Internet Explorer
Component; its interface is shown in Figure 4. Since this is only a
preliminary test version, we have focused more on functionality
of the browser and less on its usability. In the future we plan to
improve the user interface design.
We start the description of the implementation of the browser
from the change detection mechanism. Each selected past page
version was compared with its next version of the page for
detection of any changes. First, both page versions had their
HTML sources reformed so that each HTML node was converted
into one text line. We used the diff algorithm for change detection
[10]; it is based on longest common subsequence detection. We
decided to utilize the diff algorithm, as it is a popular method for
computing difference between documents and can be easily
implemented. Its drawback is that it detects any kinds of changes
in the text including also typos. However, generally, it is difficult
to predict the types of changes and their degrees that can be
interesting to different users for different pages. Nevertheless,
more complex algorithms for change detection could be utilized.
Image changes were detected by comparing src and alt attributes
in image tags. For marking changes, we used inline HTML tags,
<ins> and ; they were inserted based on HTML grammar
rules.
The change animation was realized by switching interchangeably
style settings of visibility of HTML nodes. First, the system

selected the first line containing a node with <ins> or tags.
In case of node the system set its visibility to “hidden”.
Short time later the visibility of the node was set to “visible”.
After repeating this process 10 times, the system changed the
style of the node to “display: none” in order to finally hide the
node and to reuse the space that was occupied by it. Then, all the
page content that has not been rendered yet was shifted upwards
to fill the freed space. The time period between consecutive
changes of the node’s style settings was decreasing gradually
from 300 to 50 milliseconds to provide the effect of the increase
of blinking speed. <ins> node was animated in a similar way but
in reverse order. First, the below content of the page was shifted
downwards to make the space for the new insertion. Then, the
style setting of visibility of the node was switched
interchangeably 10 times with decreasing speed. Finally the
display of this node was changed to “inline”. Besides the
animation effect, the added and deleted changes were also
indicated by different background colors. In this way, the system
processed gradually all following lines containing <ins> and
 tags to complete the animation.
To enable query-based browsing the similarity between a query
and change text was computed by identifying words they had in
common. Due to efficiency concerns, we did not decide to
implement stemming and stop-word filtering. Localized browsing
was not implemented in the prototype system.
It sometimes took a long time to browse all changes one by one,
so we equipped the browser with a “change all at once” option to
enable faster browsing by visualizing all changes at once. Also,
for pages with a high number of versions, it was difficult for users
to use the timeline and to see the version dates. We thus added a
scrollable list of all available page versions (see Figure 4) with
information about their dates. The list functionality is similar to
that of the timeline, enabling a user to click on and to move to a
target page version.
Since the content of pages that was larger than the browser’s
window could not be viewed at once, we had to modify the
presentation style by adding another option. The user could either
anchor the viewpoint of the page or scroll the page automatically.
With the first choice, only the visible part of the page can be
browsed; with the second, the animation is presented for the entire
page before the next page version is displayed. Therefore, with
the first, the user might miss important information residing on
the unseen part of the page, although the overall browsing is
faster. With the second, no content is skipped, but the presentation
might take longer time.
As the speed is an important concern for a browsing application
for the past Web, we advocate an “aggressive” prefetching and
caching policy to realize smooth browsing. Prefetching and
caching are widely used mechanisms for improving browsing in
the live Web [8,9]. During horizontal browsing the system
prefetched up to some number of next page versions so that they
could be later retrieved from cache during subsequent steps.
Additionally, when the user pressed the pause or stop button, the
browser analyzed the current page version and triggered the link
prefetching process. Link prefetching is used by several Web
browsers such as, for example, Mozilla [21]. This utilizes the idle
time of the browser for downloading pages that have a high
probability of being visited by the user. Our framework prescribes
prefetching of only the lists of available versions of the pages that
have links posted on the currently viewed document, however up

140

to certain number of page versions could be prefetched. The
sequence of links for prefetching was based on their location on
the page. The ones at the top-left were prefetched first. For query-
based browsing link prefetching was limited to those links with
the content in anchor areas that contained the query words. The
prefetching method used in the current implementation is rather
simplistic; more complex algorithms could be proposed, such as
ones based on page content, a user model, or the browsing
history.

6. EVALUATION
We evaluated the validity of our framework experimentally using
a prototype past Web browser. We used the Internet Archive as
the main repository of past page versions. Additionally, previous
page snapshots were collected from Google and MSN Search
caches, as well as from a local cache. Two pilot experiments were
carried out on a personal computer with a Pentium M 1.7-GHz
CPU and 2.0-GB RAM to test the functionality of the browser.

6.1 Experiment 1
In the first experiment, we compared our browser with the
Wayback Machine Web-based interface. Eight participants were
asked to find specific pieces of information on certain Web pages.
They were divided into two groups: the groups alternated between
using the Wayback Machine and the past Web browser to perform
four tasks. Each subject performed an equal number of tasks using
each interface. They did not have any experience using either
interface. They were thus given an explanation of each and 10
minutes of training prior to task execution. Each task lasted a
maximum of 10 minutes, except for task 3, which lasted a
maximum of 5 minutes. Below we briefly describe the tasks.
Task 1 and Task 2: The first two tasks were aimed at examining
the usefulness of the passive browsing concept together with the
change detection and presentation. In the first task, the subjects
browsed horizontally five versions of the Yahoo! main page taken
from the period May 28–June 6, 2000. They were told to find all
the changes and answer three questions related to them. The pages
were rich in content but with relatively few changes during the
target period. In the second task, they horizontally browsed nine
versions of the Open Directory Project main page taken from June
22–October 17, 2000. These pages had little content and
relatively few changes. The subjects were told to find and
describe all the changes and identify the part of the page that
changed most during the target period.
Task 3: The aim of the third task was to check the effectiveness of
query-driven browsing. The subjects were told to find changes in
a Web page using the query-driven approach with the past Web
browser or using the Wayback Machine. The Web page was the
homepage of a University of Tokyo laboratory. They browsed 34
page versions for the period from January 19, 1997, to October
13, 2004. The pages were similar to those in the first task—rich in
relatively static content. The task consisted of finding changes
related to the names of two laboratory members. For simplicity,
the subjects were told to focus on the laboratory-members section
of the page.
Task 4: The aim of the fourth task was to compare the effort
needed during browsing of the past Web vertically and
horizontally with both systems. The subjects were told to follow a

path through the past Web: browse the Yahoo! main page
horizontally, follow a certain link to another page, browse that
page horizontally, and then follow another link again and browse
the third page horizontally. The time period covered was August
6, 2000, to November 11, 2002. The final step was to return to the
starting page via the page versions they had browsed vertically.
We counted the number and calculated the percentage of correct
answers for each task. Not all tasks were completed with the
Wayback Machine as some subjects found them too difficult and
had quit before finishing them (task 1, three subjects; task 2, two
subjects). We also measured the time and effort expended by each
user for each task. Tables 1 and 2 show the average results for the
Wayback Machine and the past Web browser, respectively. The
results were significantly better for the past Web browser for each
task. On average, it took less time, fewer keystrokes, fewer mouse
clicks, and less mouse movement to complete the tasks with the
proposed browser. The advantage of the passive style of the
proposed browser can be seen in the statistics on user effort
(number of keystrokes, number of mouse clicks, and amount of
mouse movement). Moreover, the shorter times taken, together
with the higher percentage of completion for the first three tasks,
indicate that the past Web browser is an efficient tool for finding
specific information about changes in past Web pages with
varying degrees of content richness.
The results for task 3 show that the query-driven approach is an
effective way to browse relatively large number of content-rich
past page versions. With the past Web browser, the task was
completed very quickly with minimal user effort considering the
large number of page versions. The results for task 4 demonstrate
that our navigation tools enable faster and easier travel in the
spatio-temporal structure of the past Web. With the Wayback
Machine, the subjects always had to return to the main directory
page, which lists the available page versions, when they wanted to
browse the past Web horizontally. Vertical navigation was even
more troublesome.

Figure 4 Interface of past Web browser

141

Table 1 Results for the Wayback Machine

Task Completion
rate (%)

Time
(min:sec) Keystrokes Mouse

clicks

Total mouse
movement

(m)

1 45 7:54 13.5 22.5 9.45

2 28 5:0 0 87.3 14.04

3 48 9:25 2.75 62.5 14.1

4 55 8:5 66.5 54 16.37

Table 2 Results for past Web browser

Task Completion
rate (%)

Time
(min:sec) Keystrokes Mouse

clicks

Total mouse
movement

(m)

1 100 5:39 0 0.25 0.05

2 85 2:26 0 2 0.61

3 100 1:45 0.75 3 0.57

4 93 2:40 0 12.5 2.85

6.2 Experiment 2
In the second experiment, we asked the subjects to freely browse
past versions of their favorite Web pages during 10-minute
sessions. Then the subjects were asked to answer three questions
and provide comments.
1. Was it easy to understand how to use the past Web browser?
2. Was it easy to use the past Web browser?
3. Would you prefer to use the past Web browser over the

Wayback Machine for browsing the past Web?
The results are shown in Figure 5. The results for the first
question show that the subjects generally agreed that it was quite
easy to understand how to use the proposed browser. The majority
of subjects attributed this to the fact that the browser interface is
quite similar to traditional browser and video player interfaces.
However, the results for the second question demonstrated that, in
practice, the proposed browser was not so easy to use. The many
options and buttons made it troublesome for users to browse the
past Web efficiently. Some complained that too many page
versions were indicated on the timeline, which made it difficult to
visualize the distribution of pages and their changes over time.
Also, they would have preferred colors sharper than the red and
pink that were used. Some said that better indication of what the
browser was doing would help, especially during longer
processing periods. One user reported problems with
understanding the functioning of the two back buttons. We
believe that making the necessary adjustments to the system and
simplifying the GUI together with a better explanation and more
browsing experience would increase user ability to browse the
past Web using the proposed browser.
The last question concerning user preference indicates that, on
average, they preferred past Web browser to the Wayback
Machine. According to the subjects, they preferred past Web
browser mainly because of the change detection and presentation
by animation, which gave them an intuitive feeling for the page
evolution. They also liked the shorter browsing time and less
effort needed to traverse the past Web.

Incidentally, we observed that some users expressed a feeling of
nostalgia when browsing past versions of their favorite pages.
Browsing the past Web is evidently attractive.

0

1

2

3

4

5

6

N
um

be
r o

f s
ub

je
ct

s

Q1 Q2 Q3

Questions

not
rather not
so so
rather yes
yes

Figure 5 Questionnaire results

7. DISCUSSION
Our framework proposal has several limitations due to the
assumptions and simplifications that were necessary. Below we
discuss them.

• Assumption that archives can deliver available page versions
with their timestamps upon a request containing a time
period and page URL. We expect there will be more past
Web repositories available in future enabling public access
to stored versions of pages.

• The result of the history reconstruction of a page depends on
the amount and the quality of its past snapshots stored in
Web archives. If the page has poor representation of its past
states among the available repositories then the browsing
may not be satisfactory. Besides that, dynamic applications
using such technologies like, for example Flash or JavaScript
may not be working properly. We also assume permanent
URL addresses of pages over time. URL address can
sometimes change during page lifetime even if the page
remains basically the same. To cope with this problem, we
need to provide a method for detecting changes in the URL
addresses of pages.

• Pages may have few or no changes at all, so viewing them
horizontally can be boring. This problem is evident, for
example, in news sites where, often, different articles are
created as separate Web pages that can be accessed from
main pages. An opposite problem occurs when a page has
too many changes, and it takes a long time to browse the
page in time. Automatic jumping and filtered browsing can
help to alleviate these problems.

• The proposed change detection mechanism is not perfect and
should be improved. In addition, the browser may not work
properly for web pages with relatively large changes of
layout over time.

• Efficiency of browsing can be hindered by poor network
resources. Prefetching should be used to alleviate this
problem.

142

Nevertheless, this framework makes several important
contributions.

• It is a client-side system that incorporates a meta-archive
approach to increase the overall coverage of data in Web
archives resulting in a unified access to the past Web.

• It provides a means for observing the evolution of pages as
well as a means for easy, customized browsing of the past
Web. This is realized by:
o Interface similar to video players with passive

viewing of page transitions over time.
o Browsing based on change detection and presentation

in the form of animation to allow a smooth transition
between page versions and to draw user’s attention to
updated content.

o Navigation tools such as timeline, back and forward
buttons, and automatic jumping mechanism enabling
the user to skip periods without change.

• It supports filtered navigation thanks to:
o Selective browsing through query-driven filtering.
o Localized browsing for limited viewing of a user-

selected area.

One potential application of the proposed browser assumes
integration of the past and live Web for browsing at the same
time. The concept of combining browsing of archived data with
browsing of the live Web has been actually implemented in
WAXToolbar - a Firefox browser extension to the Wayback
Machine [29]. If the interface to the live Web is added to our
proposed framework then users will be able to browse current
versions of Web pages in the traditional way as they are doing
now. Present versions of pages would be inserted into the timeline
and accessible as any other past version. When necessary, users
could see the histories of interesting pages by browsing backward
in time. In this way they would have potential starting points for
their journey to the past. Below we list some possible applications
of the mixed-Web browsing using our proposed framework:

• Watching the history of an interesting page or its part in
order to see its past content. Users may want to view more
content from pages that are particularly attractive to them.
They might be searching for certain content that already
disappeared from a page. For example, one remembers that
he or she had seen a particular article on the page and wants
to read it now in detail, however, it is no longer available in
the live Web. In this case the user can travel back in time to
try to find the article by using query-driven browsing. In
addition, one can also see the past context of an element
from the present version of the page. To better understand a
particular part found on the present page the user may travel
back in time to the point of the element’s origin in order to
see its local context at that time.

• Retrieving pages that cannot be accessed. This case is similar
to Google’s cache system. Many times users use the cache in
the search engine to view the page that is currently
inaccessible. Such usage can be realized for any page
provided that its recent version is stored in any available
online Web archive.

• Detecting age of page elements. For example, upon noticing
a person’s name in a laboratory members’ list in the present
version of a page, the user may want to know when the
particular person was first listed in this page. However, in
many cases such information cannot be easily obtained.
Thus, he or she can use query-based browsing to
approximately discover when the person started working in
the particular laboratory. In another example, a user may
wish to know the date of the occurrence of a statement in the
news section of a company Web page to check if it is
actually new. In short, each element of the page content can
be associated with its approximated date of origin provided
that the history of the page can be reconstructed with a
sufficient precision. This approach provides temporal
information that can shed new light on the page content.

8. CONCLUSIONS
In this paper we have described a general framework for a past
Web browsing interface that supports horizontal and vertical
browsing. We propose a client-side browser that enables easy and
customized viewing of the history of pages. The framework
incorporates the meta-archive approach for improving the
coverage of Web archives. It requires real-time communication
with complementary past Web repositories. The framework
features passive browsing style and utilizes change detection and
change presentation. Since the changes in content are of particular
importance when browsing past pages, the browsing is based on
emphasizing the changed content. The changes are animated to
smooth the transitions between page versions and to draw the
user’s attention to updated content in the page over time. The user
can control the presentation flow in a way similar to video
players. The framework also includes search-oriented functions
for improved browsing by filtering information. They enable the
user to specify an interesting change or an area to be watched.
Finally, we discuss the potential applications of combined
browsing of the live and past Web.
In future we plan to work on overcoming the limitations
mentioned in the paper. We also hope that our efforts spark more
interest in the Internet community in developing more efficient
interfaces for browsing and searching the massive amounts of past
data stored in Web archives.

9. ACKNOWLEDGEMENTS
This research was partially supported by the Japanese Ministry of
Education, Culture, Science and Technology Grant-in-Aid for
Scientific Research in Priority Areas entitled: Content Fusion and
Seamless Search for Information Explosion (#18049041,
Representative Katsumi Tanaka), and by the Informatics Research
Center for Development of Knowledge Society Infrastructure
(COE program by the Japanese Ministry of Education, Culture,
Sports, Science and Technology) as well as by the Japanese
Ministry of Education, Culture, Science and Technology Grant-
in-Aid for Young Scientists B (#18700111).

10. REFERENCES
[1] AOLA. Austrian On-Line Archive:

http://www.ifs.tuwien.ac.at/~aola

[2] Arvidson, A., Persson, K. and Mannerheim J. The
Kulturarw3 project - The Royal Swedish Web Archiw3e -
An example of "complete" collection of Web pages. In

143

Proceedings of the 66th IFLA Council and General
Conference, Jerusalem, Israel, 2000, 13-18.

[3] Boyapati, V., Chevrier, K., Finkel, A., Glance, N., Pierce, T.,
Stockton, R., and Whitmer, C. ChangeDetector™: A site
level monitoring tool for WWW. In Proceedings of the 11th
International World Wide Web Conference. Honolulu,
Hawaii, USA, 2002, 570-579.

[4] Brewington, B. E. and Cybenko, G. How dynamic is the
Web? In Proceedings of the 9th International World Wide
Web Conference. Amsterdam, The Netherlands, 2000, 257-
276.

[5] Chi, E. H., Pitkow, J., Mackinlay, J., Pirolli, P., Gossweiler,
R. and Card, S. K. Visualizing the evolution of Web
ecologies. In Proceedings of Conference on Human Factors
in Computing Systems (CHI '98), Los Angeles, California,
USA, ACM Press, 1998, 400-407.

[6] Cho, J., and Garcia-Molina, H. The evolution of the Web and
implications for an incremental crawler. In Proceedings of
the 26th International Conference on Very Large Databases
(VLDB), Cairo, Egypt 2000, 200-209.

[7] Cockburn, A. and McKenzie, B. What do Web users do? An
Empirical Analysis of Web Use. International Journal of
Human-Computer Studies 54(6), Academic Press, Inc. 2001,
903-922.

[8] Davison, B. D. A Web caching primer. IEEE Internet
Computing, 5(4), 2001, 38-45.

[9] Davison, B. D. Predicting Web actions from HTML content.
In Proceedings of the 13th ACM Conference on Hypertext
and Hypermedia, College Park, MD, USA, 2002, 159-168.

[10] Diff Algorithm:
http://www.codeproject.com/cs/algorithms/diffengine.asp

[11] Douglis, F., Ball, T., Chen, Y., and Koutsofios, B. AT&T
Internet difference engine: tracking and viewing changes on
the Web. World Wide Web Journal, 1(1). Kluwer Academic
Publishers, 1998, 27-44.

[12] Dyreson, C. E. Towards a temporal World Wide Web: a
transaction-time Web server. In Proceedings of the 12th
Australian Database Conference (ADC '01), Gold Coast,
Australia, 2001, 169-175.

[13] Dyreson C. E., Lin H-L, and Wang Y. Managing versions of
Web documents in a transaction-time Web server. In
Proceedings of the 13th International World Wide Web
Conference, New York, USA, 2004, 422-432.

[14] Election Web 2002 Archive: http://lcWeb4.loc.gov/elect2002

[15] Fetterly, D., Manasse, M., Najork, M., and Wiener, J. L. A
large-scale study of the evolution of Web pages. In
Proceedings of the 12th International World Wide Web
Conference, Budapest, Hungary, 2003, 669-678.

[16] Grandi, F. An Annotated Bibliography on Temporal and
Evolution Aspects in the World Wide Web. TimeCenter
Technique Report, 2003.

[17] Hallgrimsson, Þ. and Bang S. “Nordic Web Archive” In
Proceedings of the 3rd ECDL Workshop on Web Archives in
conjunction with the 7th European Conference on Research
and Advanced Technologies in Digital Archives, Trondheim,
Norway, 2003.

[18] International Internet Preservation Consortium:
http://netpreserve.org

[19] Internet Archive: http://www.archive.org

[20] Jacob, J., Sanka, A., Pandrangi, N. and Chakravarthy, S.
WebVigiL: An Approach to Just-in-time Information
Propagation in Large Network-centric Environments. In
Web Dynamics Book. Springer-Verlag, 2003.

[21] Mozilla Web Browser, Link Prefetching FAQ:
http://www.mozilla.org/projects/netlib/Link_Prefetching_FA
Q.html

[22] NWA Toolset: http://sourceforge.net/projects/nwatoolset
http://nwa.nb.no

[23] Offline browsing:
http://en.wikipedia.org/wiki/Offline_browser

[24] Pandora, Australia’s Web Archive: http://pandora.nla.gov.au

[25] September 11 Web Archive: http://september11.archive.org

[26] Tauscher, L. and Greenberg, S. How people revisit Web
pages: empirical findings and implications for the design of
history systems. International Journal of Human Computer
Studies, 47(1), 1997, 97-137.

[27] Toyoda, M., Kitsuregawa, M. A system for visualizing and
analyzing the evolution of the Web with a time series of
graphs. In Proceedings of the 16th ACM Conference on
Hypertext and Hypermedia, Saltzburg, Austria, 2005, 151-
160.

[28] Toyoda, M., Kitsuregawa, M. Extracting evolution of Web
communities from a series of Web archives. In Proceedings
the 14th ACM Conference on Hypertext and Hypermedia,
Nottingham, UK, 2003, 28-37.

[29] WAXToolbar:
http://archiveaccess.sourceforge.net/projects/waxtoolbar

[30] Wayback Machine Open Source Implementation:
http://archive-access.sourceforge.net/projects/wayback

[31] WERA: http://archive-access.sourceforge.net/projects/wera

144

